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Construction of a superimposed
code using partitions

Vladimir Ufimtsev
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Abstract

This paper will focus on the construction of superimposed codes using incidence matrices. Such
constructions require a set of elements and a partial order defined on the set. We will define a partial
order on partitions. The construction will be made using elements from the partially ordered set of
partitions of n elements.
� 2005 Elsevier Ltd. All rights reserved.
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1. Definitions

Definition 1. Consider the following matrix:

X =

⎡
⎢⎢⎢⎢⎢⎣

x11 x12 . . . x1t

x21
. xij

.

.

xN1 xN2 . . . xNt

⎤
⎥⎥⎥⎥⎥⎦ , xij ∈ {0, 1}.

The above N × t matrix X will be referred to as a code. The columns of X are the
codewords. Let xj denote the j th codeword. Then we have a code of size t and length N .
Notice that code X is a collection of codewords that are represented by binary vectors;
hence we can use the concept of a Boolean sum and intersection of two binary vectors.
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Definition 2. The Boolean sum of two binary codewords is denoted by xi ∨ xj = (x1i ∨
x1j , . . . , xNi ∨ xNj ), where ∨ is the OR operation.

Definition 3. The intersection vector of two binary codewords is denoted by xi ∧ xj =
(x1i ∧ x1j , . . . , xNi ∧ xNj ), where ∧ is the AND operation.

Definition 4. We say that xi covers xj if xi ∨ xj = xi .

Definition 5. A code X has strength s if the Boolean sum of any s codewords does not
cover any other codeword in X. A code that has a strength s is an (N, s, t) superimposed
code.

Definition 6. The weight w(xi ) of binary codeword xi is the number of nonzero elements
in the codeword. Let w = min1� i � tw(xi ).

Definition 7. The intersection �(xi , xj ) between two codewords—xi , xj —is the number
of places in which both xi and xj have nonzero elements, i.e. �(xi , xj ) = w(xi ∧ xj ). Let

� = max
1� i,j � t

i �=j

�(xi , xj ).

Theorem (Kautz–Singleton). A lower bound for the value of the parameter s is [3]:
s��(w − 1)/��.

Remark. Obviously if we have that any s codewords do not cover any xj , then we also
have any number of codewords less than s will also not cover xj .

Let n, q1, q2 ∈ N, where 2�q1 �q2 �n. Aqi
≡ {0, 1, . . . , qi − 1} is the standard qi-

ary alphabet, i ∈ {1, 2}, and [n] = {1, 2, . . . , n} is an ordered set of n elements. Mqi
≡

{�1, �2, . . . , �qi !} is the set of all qi ! permutations of qi symbols. Let y ≡ (y1, y2, . . . , yn),
yi ∈ Aqi

denote an arbitrary qi-ary n-sequence that identifies an unordered qi-partition
{E0; E1; . . . ; Eqi

} of [n] where Em = {i : yi = m}, m ∈ Aqi
e.g. if [n] = {1, 2, 3, 4, 5} and

qi = 3; then y = (1, 1, 1, 2, 0) identifies the partition {(5); (1, 2, 3); (4)} where E0 = {5},
E1 = {1, 2, 3} and E2 = {4}.

Remark. Any qi-partition contains q ′
i , 1�q ′

i �qi , nonempty clusters.

For any �i ∈ Mqi
we can identify a qi-ary n-sequence: y�i =(�i (y1), �i (y2), . . . , �i (yn))

called a �-complement of y. Notice that all �-complements of any y identify the same
unordered qi-partition. In our construction we want to isolate all partitions of a set that have
q1 and q2 nonempty clusters. Then we will define a partial order relation between them.
Let us denote a partition with qi nonempty clusters by ỹqi

. The set of all partitions of [n]
that contain qi nonempty clusters will be denoted by Sqi

(n). In addition to �-complement
where a bijection acts on a vector, we would also like to introduce this operation but
with a surjection from Aq2 onto Aq1 . We will say that vector y is mapped by � to y� =
(�(y1), �(y2), . . . ,�(yn)). Let us introduce the following relation 	. We will say that
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ỹq1 	 z̃q2 iff ∃� : Aq2 → Aq1 , a surjection, such that z�
q2 = yq1 for some vector zq2

corresponding to z̃q2 , and yq1 corresponding to ỹq1 . z̃q2 is then called a sub-partition of ỹq1 .
Notice that if q1 < q2, then we can never have z̃q2 	 ỹq1 since we cannot define a surjection
from one set to a larger set.

We would now like to find the number of partitions that have q1 clusters (nonempty parts)
and also the number of partitions that have q2 clusters. This is a problem solved by using
Stirling set numbers of the second kind [4]. We have that the number of partitions of [n]
having qi clusters is

|Sqi
(n)| = 1

qi !
qi−1∑
j=0

(−1)j
(

qi

j

)
(qi − j)n.

2. Construction

The construction of this superimposed code is similar to the construction used in [1] with
the exception that we use the Kautz–Singleton bound for the strength s. Instead of using the
set–subset relation, we shall use the partition–subpartition relation as defined above. Let
us denote elements from Sq2(n) by Pi , 1� i� |Sq2(n)| and elements from Sq1(n) by Rj ,
1�j � |Sq1(n)|. Consider the following matrix:

[P1 . . . Pi . . . Pt ]⎡
⎢⎢⎢⎢⎢⎣

R1
.

.

Rj

.

RN

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

x11 x12 . . . x1t

x21
.

. xji

.

xN1 xN2 . . . xNt

⎤
⎥⎥⎥⎥⎥⎦ ,

where xji = 1 iff Rj 	 Pi else xji = 0. Notice that for this code we have

t = |Sq2(n)|,
N = |Sq1(n)|.

We can also find the weight and maximum intersection and hence a value for s—the
strength of the code. First of all notice that to find the weight of any column i we need to
find the number of surjections from Pi to partitions containing q1 clusters. This is translated
to being the number of surjections from Aq2 to Aq1 . This value depends only on the values
q1 and q2, which means that as we increase n and hence increase the number of codewords
t and their length N , we will always have a constant weight (assuming we keep q1 and q2
constant). The number of surjections from a set of size q2 to a set of size q1 is a well-known
formula:

q1−1∑
i=0

(−1)i
(q1

i

)
(q1 − i)q2 .
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Now we have to notice that for any surjection, a permutation composed with the surjec-
tion is also a surjection (a different one) but the partition to which it is mapping its subject
to is the same because the vector is simply a �-complement. More formally,

y�
q2 ≈ z̃q1 ,

(y�
q2)

�i ≈ z̃q1 , ∀�i ∈ Mq1 .

Also ∀�i ∈ Mq1 , �i �= (1), �i ◦ � = � �= �, and since the composition of an onto
mapping with an onto mapping is again onto, we have that � is onto. The weight is going
to be the number of surjections from a given partition Pi to distinct partitions. Since the
vectors representing partitions of the form Rj contain all q1 symbols, we must divide the
sum of surjections by q1! to obtain w:

w = 1

q1!

q1−1∑
i=0

(−1)i
(q1

i

)
(q1 − i)q2 = |Sq1(q2)|.

Note that the value for w is a Stirling set number, i.e. it is the number of ways of
partitioning a set of q2 elements into q1 clusters, which is exactly what we are doing in the
partial order relation.

To find �, the maximum intersection, we must first specify a partition distance as used
in [2]:

Definition 8. The partition distance between two partitionsPi, Pj isdP (Pi, Pj )=min�∈Mq2

dH (yq2 , z�
q2), where dH is the Hamming metric and yq2 ≈ Pi , zq2 ≈ Pj .

Lemma. If dP (Pi, Pj ) = 1, then �(xi , xj ) = �.

Proof. Let Pi, Pj be partitions, containing q2 nonempty clusters, such that dP (Pi, Pj )=1.
By definition, there exist vectors y ≈ Pi , z ≈ Pj such that dH (y, z) = 1. This means
that ∃i, 1� i� t, yi = a �= zi = b. To obtain the number of partitions from Sq1(n) that
have Pi and Pj as sub-partitions, we group clusters a and b into one cluster to obtain
a partition containing q2 − 1 nonempty clusters. We then find that the number of sur-
jections from Pi and Pj into Sq1(n) is |Sq1(q2 − 1)|. Hence �(xi , xj ) = |Sq1(q2 − 1)|.
If on the other hand, we have that dP (Pi, Pj ) > 1, then we will also have dH (y, z) > 1,

meaning that there will be more positions in the vectors that will have differing ele-
ments. In the same way, to find �(xi , xj ), we would have to group clusters together. This
could produce partitions that have q2 − k, k = −−−−−→

2, q2 − 1 nonempty clusters, producing
an intersection:�(xi , xj ) = |Sq1(q2 − k)|. Stirling set numbers of the second kind de-
crease as the size of the sequence being partitioned decreases and the number of clus-
ters the sequence is partitioned into remains the same, i.e. |Sq1(q2 − k)| < |Sq1(q2 −
1)|, k = −−−−−→

2, q2 − 1. This means that a case in which the maximum intersection � occurs
is between partitions that are at minimal distance from each other and it is equal to
|Sq1(q2 − 1)|. �
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Table 1

n t N q2 q1 s

10 34 105 9330 4 3 5

10 42 525 511 5 2 2
10 42 525 9330 5 3 4
10 42 525 34 105 5 4 9

10 22 827 34 105 6 4 6
10 22 827 42 525 6 5 14
20 45 232 115 901 524 287 4 2 2
20 45 232 115 901 580 606 446 4 3 5
20 749 206 090 500 524 287 5 2 2
20 749 206 090 500 580 606 446 5 3 4
20 749 206 090 500 45 232 115 901 5 4 9

Now we can calculate s using the Kautz–Singleton bound:

s =
⌊

w − 1

�

⌋
=

⌊ |Sq1(q2)| − 1

|Sq1(q2 − 1)|
⌋

.

Below is a summary of the parameters for the code that we constructed.

t = |Sq2(n)|, w = |Sq1(q2)|,
N = |Sq1(n)|, � = |Sq1(q2 − 1)|.

Table 1 gives a list of some parameters that were found using specific values for n, q1, q2
and using the Kautz–Singleton bound.
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