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Narrowband Interference Suppression in CDMA 
Spread Spectrum Communications 

Leslie A. Rusch, Student Member, IEEE and H. Vincent Poor, FeZZow, IEEE 

Abatmct- Spread spectrum (SS) communications offers a 
promising solution to an overcrowded frequency spectrum 
amid growing demand for mobile and personal communi- 
cations services. The proposed overlay of spread spectrum 
signals on existing narrowband users implies strbng inter- 
ference for the SS system, This paper discusses how system 
performance can be improved by preprocessing to suppress 
narrowband interference. Linear prediction fllters have been 
proposed since the 1980s for suppression of narrbwband in- 
terference. In 1991 Vijayan and Poor proposed nonlinear 
methods of suppressing the narrowband signal with signif- 
icant increase in the SNR improvement. We derive an en- 
hancement to this nonlinear prediction and achieve further 
improvement by applying the technique to interpolating fll- 
ter structures. Finally, we extend results to the case of mul- 
tiple spread spectrum users and demonstrate how nonlinear 
flltering can dramatically outperform linear flltering. 

I. INTRODUCTION 
There is much concern in the communications industry 
with the increasingly overcrowded frequency spectrum, a 
condition aggravated by the growing demand for mobile 
radio and personal communications services. The use of 
spread spectrum techniques for these emerging multiuser 
environments has been proposed as a means of overlaying 
new mobile systems on existing band occupants, thereby 
relieving the demand for new allocations. 

The proposed overlay of spread spectrum signals on ex- 
isting narrowband users presents an opportunity for new 
nonlinear techniques in signal processing. Single user fre- 
quency bands can be modeled with some accuracy as hav- 
ing a Gaussian environment, however the presence of addi- 
tional data signals causes decidedly non-Gaussian behav- 
ior. Optimal detectors and receivers for such channels are 
therefore no longer linear. For interferenke suppression this 
means the filtering environment is a non-Gaussian one. 
Nonlinear filtering is one possible technique that can be 
profitably used in such environments. 

While SS has inherent noise suppression capability (it is 
this characteristic of spread spectrum that suggests the new 
applications), this paper discusses how system performance 
can be further enhanced by preprocessing to suppress nar- 
rowband interference. Techniques for filtering of the SS sig- 
nals to suppress narrowband interference have been studied 
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since the 1980s. Fixed and adaptive linear prediction fil- 
ters were first used to suppress significant portions of the 
interference. Interpolating linear filters were found to give 
even greater interference suppression [1,2,3,4,5]. 

In 1991 Vijayan and Poor proposed nonlinear methods 
of predicting the narrowband signal that led to significant 
increases in the SNR improvement due to filtering [6]. This 
nonlinear method was derived from a system model that 
takes into account the non-Gaussian distribution of the ob- 
servation noise (from the ]point of view of predicting the in- 
terferer, the observation noise consists of AWGN plus the 
data signal). The nonlinear filter effectively introduces soft 
decision feedback into conventional filtering, essentially re- 
moving the data signal, and reducing the filter adaptation 
to one in Gaussian white noise. Results were extended to 
environments with impulsive noise in [7]. 

In this paper we derive an enhancement to  the nonlinear 
prediction techniques of Vijayan and Poor ag well as a new 
interpolating nonlinear filter structure. Furthermore, we 
extend results to the kase of multiple spread spectrum users 
and discuss s~me issues that arise in the analysis of the 
nonlinear it ies. 
The paper is organized as follows. We begin, in Sec- 

tion 11, with the premise that by exploiting the predictabil- 
ity of a narrowband interferer we can increase the signal 
to noise ratio at the input of a spread spectrum receiver. 
To explore this problem ahalytically, a discrete time, state 
space model of the interference is used. The non-Gaussian 
measurement noise in this prediction requires a nonlinear 
filter €or optimal (minimum mean square error) prediction. 
An app~ozimate conditional mean nonlinear recursive fil- 
ter is introduced. Results for simulations comparing linear 
and nonlinear filters for the case of known statistics are 
presented. 

Adaptive filtering is examined in Section I11 for the more 
realistic case when the statistics of the narrowband pro- 
cess are unknown, A linear least mean squares predictor is 
modified to incorporate the approximate conditional mean 
nonlinearity. Results for simulations of linear and nonlin- 
ear adaptive filtering are given, including an enhancement 
of the original adaptive algorithm, proposed in [6]. 

Interpolating filters are considered next, in Section IV, 
and a new interpolated approximate conditional mean is 
derived. A block implementation of the adaptive nonlin- 
ear interpolating filter is developed. Simulation results are 
given cdmparing interpolating and predicting filters. 

These filtering methods (both recursive and adaptive) 
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are applied to systems with more than one spread spec- 
trum user in Section V. The nonlinearity in the approx- 
imate conditional mean filter introduces an offset to the 
prediction. The offset is estimated and removed. 

In Section VI we discuss some relevant issues regarding 
analysis of the performance of nonlinear over linear filter- 
ing and also the issue of convergence to a steady state so- 
lution. Finally, in Section VII, we summarize the results 
of this analysis and give several possible future directions 
for research. 

II. ACTIVE INTERFERENCE SUPPRESSION TECHNIQUES 
Narrowband interference in a spread spectrum signal can 
be actively suppressed by exploiting the discrepancy in 
bandwidth of the two signals. The spread spectrum sig- 
nal is essentially unpredictable, while the narrowband sig- 
nal can be predicted with some accuracy. Consequently, 
any prediction of a received signal consisting of spread 
spectrum signals plus narrowband interference will be a 
prediction primarily of the interfering narrowband signal. 
Previous researchers have investigated linear filtering tech- 
niques for interference suppression in SS. If the interfer- 
ence is wide sense stationary and the statistics are known, 
the Levinson-Durbin algorithm can be used to recursively 
solve for the optimal filter coefficients. For unknown statis- 
tics, several techniques exist to determine the optimal tap 
weights adaptively. Among these the least mean squares 
(LMS) algorithm is used most frequently due to ease of 
analysis and implementation [l]. 

A .  System Model 
In order to describe and analyze the narrowband in- 

terference suppression problem, we will assume that the 
received signal is passed through a filter matched to the 
chip waveform and chip-synchronously sampled once dur- 
ing each chip interval, per Figure 1. The equivalent discrete 
time received signal will have components due to the spread 
spectrum signal, S k  , the narrowband interference, ik, and 
the ambient white noise, n,k .  The observation at sample k: 
is then given by 

The ambient noise can be modeled as being white Gaussian 
with variance vi, the signal sk as being 1 1  with equal prob- 
abilities, and the interference as having bandwidth much 
less than the spread bandwidth. The three signals can be 
assumed to be mutually independent. 

Vijayan and Poor cast the interference suppression prob- 
lem in state space form for use with the Kalman-Bucy filter 
[6].  We will adopt this model as well. The interference is 
modeled as an AR process, i . e . ,  

where e k  is a white Gaussian process with variance c:. The 
state space representation of our system is given by 

z(t) = s(t) + i(t) + n(t) 

chip 
matched 

filter 
T, chip rate 

z received signal 

s k spread spectrum signal 

ik narrowband interference 

n measurement noise (AWGN) 

Fig. 1 System Model 

k 

z k  = HZk + v k .  (4) 

where g k  = [ik i k - 1  .. . i k - p + l I T ,  W k  = [ek 0 . . . 0IT, 
H = [l 0 . . . 01, and 5 is the companion matrix of the 
vectors $1,. . . , 4,. The observation noise in our system, 
v k ,  is a sum of the white Gaussian measurement noise, n k  , 
and the spread spectrum signal, sk. The variance of the 
combined observation noise is 1 i- CJ; (after normalizing to 
the energy of the spread spectrum signal, and assuming it 
is equiprobable rt 1). 

The Kalman filter is the optimal linear predictor for the 
model of (3)-(4), and it is the optimal predictor when the 
observation noise is Gaussian (see, e.g., Poor [SI). In our 
system, a Gaussian noise assumption clearly does not hold, 
as the observation noise density is the convolution of that 
of the spread spectrum signal with the Gaussian noise dis- 
tribution. The smaller the measurement noise power in 
relation to the SS signal, the more pronounced is this dif- 
ference. In order to exploit this non-Gaussian behavior, 
Vijayan and Poor proposed use of nonlinear filtering. 

B. ACMFilter 
Recall that the minimum mean squared error (MMSE) 

estimator of the state gk at a fixed time IC given the pre- 
vious observations is E[% Izk-'], where zk-l represents all 
observations from time 0 to time IC - 1. Using the above 
model, if the observation noise were Gaussian, this would 
imply that the state and observations were jointly Gaus- 
sian. In this case, the conditional mean (and hence the 
MMSE estimator) would also have a Gaussian distribu- 
tion. The Kalman-Bucy recursions are based on this model 
of Gaussian observation noise. For the system model used 
here the measurement noise is clearly not Gaussian, and the 
optimal filter (that is, the exact conditional mean) is non- 
linear with exponentially increasing complexity. For the 
general state space filtering formulation with non-Gaussian 
measurement noise, Masreliez proposed an approximation 
to this optimal filter [9]. In particular, Masreliez proposed 
that some, but not all, of the Gaussian assumptions used in 
the derivation of the Kalman filter be retained in defining 
a nonlinear recursively updated filter. He abandoned the 
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requirement that the observation noise be Gaussian. How- 
ever, he retained a Gaussian distribution for the conditional 
mean, although it is not a consequence of the probability 
densities of the system (as is the case for Gaussian observa- 
tion noise); hence the name approximate conditional mean 
(ACM) that is applied to this filter. 

Due to space considerations, we must refer the reader 
to [9] for a derivation of the ACM filter, and to [6] for its 

updates. The time updates are: 

h 

8 
B 
id 

B 

1 application to  the system model used here. The nonlinear 
filter derived from the ACM has the following recursive !2 m 

(5) 

(6) 

- 
&k+l  = a& 

Mk+l = @Pk@' + Q k  

The measurement updates are given by: 

(7) 

Pk = Mk - MkHTGk(zk)HMk (8) 
The predicted estimate 3Tk is the mean of :k conditioned 
on previous observations, E[gkIx;-'], and Mk is its co- 
variance. The vector 6ik is the filtered estimate and its 
conditional covariance matrix is Pk. Qk is the covariance 
matrix of the state input (the AR process). Note that the 
time updates are identical to those of the Kalman filter. 
The terms Gk and gk denote nonlinearities arising from 
the (non-Gaussian) distribution of the observation noise 
and are given by the following 

(9) 

where we have defined Ek as the innovation (or residual) 
signal and crz as its variance; that is 

Note that, without the nonlinear terms tanh and sech, the 
Masreliez recursions reduce to the (linear) Kalman-Bucy 
recursions. 

The ACM filter provides decision feedback in the tanh 
term; that is, it corrects the measurement by a factor in 
the range [-1,1] that estimates the spread spectrum signal. 
When the filter is performing well, the variance term in the 
denominator of the tanh is low. This means the argument 
of the tanh is larger, driving the tanh into a region where 
it behaves like the sgn(.) function, and thus estimates the 
spread spectrum signal to be $1 if the residual signal ~k 
is positive, and -1 if the residual is negative. On the other 
hand, when the filter is not making good estimates, the 
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Fig. 2 Known Statistics 

to be unity. When the power of the SS signal is not known 
at the receiver the tanh term must be multiplied by an 
estimate of the amplitude. An adaptive algorithm for per- 
forming this estimate is described in [6]. 

C. Simulations 

In order to assess the performance gains afforded by the 
nonlinear techniques described above, simulations were run 
for a second order AR interferer with both poles at 0.99 
(i .e. ,  &=1.98 and $2=-0.9801). In this simulation, the 
noise power was held constant at cr; = 0.01 while the total 
of noise plus interference power was varied from -20 dB to 
5 dB (all relative to a unity power SS signal). Our figure 
of merit in comparing filtering methods is the ratio of SNR 
at the output of filtering to the SNR at the input, which 
reduces to 

where Ek is defined as previously. The results for the Kalman 
predictor and ACM predictor are given in Figure 2. The 
filters were run for 1500 points. The results reflect the last 
500 points, and the given values represent averages over 
4000 independent simulations. 

To stress the effectiveness against the narrowband inter- 
ferer (vice the background noise), the solid line in Figure 2 
gives an upper bound on the SNR improvement assuming 
that the narrowband interference is predicted with noise- 
less accuracy, that is, as (T,, + 0. This is calculated by 
setting E( lek - S k  1 2 )  equal to the power of the AWGN driv- 
ing the AR process, i . e . ,  the unpredictable portion of the 
interference. 

111. A D A P T I V E  FILTERING variance is high and tanh is in a linear region of operation. 
In this region, the filter hedges its bet on the accuracy of 
sgn(ck) as an estimate of the spread spectrum signal. Here 
the filter behaves essentially like the (linear) Kalman filter. 

In the above we have referenced all the power variables 
( C T ~  and C: ) to the spread spectrum power, which we take 

A* I h e a r  Predictor 
When the statistics for the AR process are not known, 

an adaptive algorithm must be used to find the optimal 
tap weights for the linear predictor. The LMS algorithm 



1972 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 42, NO. 2/3/4, FEBRUARY/MARCWAPRIL 1994 

is one of the simplest adaptive algorithms to analyze and - - 

implement. The linear predictor using an LMS filter of 
length L has the system diagram given in Figure 3. The 
residual of the prediction, e k ,  is sent to the input of the SS 
receiver. 

1 Ek 
Fig. 3 Linear Predictor 

For observation vector X r  = [zk-l zh -2  . . . z ~ - L ] ~  and 
vector of tap weights Ok = [allk a 2 , k  . . . a&,kIT at time 
k, the LMS filter generates the estimate 81, = XT . Ok-1, 
with tap weight updates 

Q k  = Q k - i +  Pk(Zk - 2 k )  * Xk (13) 

A normalized step size f i k  makes the step less dependent 
on the signal amplitude in Xk and also speeds convergence 
while guarding against instability. This step size is given 
by 

Fig. 4 

1 $k 
Nonlinear Predictor 

less the soft decision on the spread spectrum signal, that 
is. 

Then Figure 4 represents the resulting adaptive nonlinear 
predictor. [6] 

The filter weights Ok are defined as for the linear pre- 
dictor, as is the observation vector X k .  The nonlinear pre- 
diction is given by 

(17) 
- T 2 k  = 6k-l * [ z k - i  z k - 2  . . Z k - L ]  , 

so that the estimate of the interference ( 2 k  ) is based on 
the observations less the soft decision on the signal. The 
tap weight update is unchanged, ie., (13). If the tanh 
function accurately tracks the SS signal, the filter essen- 
tially predicts the interference in white Gaussian noise and 
should only be limited by the unpredictable part of the AR 
process, the measurement noise and the excess error in the 
LMS algorithm. 

The estimate of the signal power r k  is an exponentially 
weighted estimate. po is chosen small enough to ensure 
convergence; ro should be large enough so that the denom- 
inator never shrinks so small as to  make the step size large 
enough for the adaptation to  become unstable. 

B. Nonlinear Predictor 
The nonlinearity appearing in the ACM filter has been 

introduced into the prediction structure in Figure 4. As- 
suming as before, that the prediction has a Gaussian dis- 
tribution, then the distribution of the current observation 
conditioned on the previous observation is a sum of a Gaus- 
sian and a binary random variable. Denote by oi the vari- 
ance of the innovation E k  ; then the appropriate nonlinear- 
ity is given by 

 EL) = zk - Ẑ k - tanh ______ ( 

I I I 

Fig. 5 Adaptive Filtering 

= ek - tanh ( 2 )  . (15) C. New Adaptation Algorithm 
Previous simulations [6] showed that the adaptive non- 

linear filter did not achieve the same performance as the 
ACM filter when foreknowledge of the interference statis- 
tics was used, whereas the linear filter did reach this prior 

This transformation represents the residual less the soft 
decision on the SS signal. Let zk represent the observation 
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performance. This can be seen in comparing results in Fig- 
ure 2 with Figure 5. By altering the tap weight update (13) 
to be based on the residual less the soft decision feedback, 
the adaptive filter was able to track the interference as well 
as the ACM filter did when the statistics are known. This 
new update equation is 

81 = dk-1 pk(zk - i k )  [Zk-l z k - 2  . . . z k - , 5 ]  (18) 

Now the filter adaptation is indeed being done in Gaussian 
noise (when the decision feedback is accurate). 

To assess this alternate adaptive algorithm, simulations 
were run on the same AR model for interference given in 
the previous section. Results given in Figure 5 are for aver- 
ages over ten trials, with the SNR improvement calculated 
as a sample average of the last 500 points. The filter was 
run for 3000 samples. The new update strategy offers sig- 

The rightmost ratio of (23) is an integrating factor inde- 
pendent of the current state. If it is assumed (analogously 
to what is done in the Masreliez ACM filter) that the two 
densities in the numerator of the left term are Gaussian, 
then the interpolated estimate is also Gaussian. We use 
the notation N ( p , C )  for a Gaussian density of mean p 
and covariance E. Therefore, if we assume the densities 
are as follows (where f indicates the forward prediction 
and b indicates the backward prediction) 

P(ZkI.0k-l) = Nb j ,  Cf) 

P ( 4  = N ( P , Z )  9 

P ( X 6  lZr+i )  = N(pb,  zb) 

then the interpolated estimate is Gaussian with the follow- 
ing mean and covariance. 

nificant improvement over the earlier version of the adap- 

the linear filter. We observe that this adaptive algorithm 
achieves the same performance as do recursive filters that 
make use of the statistics of the interferer. 

tive ACM filter, which in turn performed much better than meun = p y q ' [ c ; 1 +  e-1- b e-']-' 
+pfC;'[C;' + E;' - E-']-' (24) 

(25) covariance = [xi' + E,' - ~ ' 1 - l  

IV. INTERPOLATING FILTERS 
Previous investigations into linear suppression filters led to 
the use of transversal, interpolating filters. In addition to 
the good phase characteristics of symmetric interpolating 
filters, these filters offered greater SNR improvement than 
predicting filters [2,4]. These results are extended to the 
Kalman and ACM filters in the following analysis. The 
goal of this line of research was to determine what gain 
(if any) could be obtained from an interpolating nonlinear 
filter, and how such a filter could be implemented. The 
first step is derivation of an interpolating ACM filter. 

The following equations give the density of the current 
state conditioned on previous and following states. Al- 
though a slight abuse of notation, in the following deriva- 
tion we let zk = Hgk,  that is, the first component of the 
vector gk. The first relationship is a statement of Bayes 
formula. 

Using the independence of the zgk-' and ZC+~ when condi- 
tioned on xk, we can factor the first term in the numerator. 

Applying Bayes rule several times, we get the following. 

While the mean and covariance of the interpolated estimate 
at each sample k can be computed per the above equations, 
recall that the forward and backward means and covariance 
matrices are determined by nonlinear ACM-type filter re- 
cursions. 

A. Block Interpolator for Known Statistics 

The above equations can be used for both the linear 
Kalman filter and the Masreliez ACM filter to generate 
interpolated predictions from the forward and backward 
predicted estimates, (p j  and respectively). As in the 
ACM predicting filter, we have approximated the condi- 
tional densities as being Gaussian, although the observa- 
tion noise is not Gaussian. The filters are run forward on 
a block of data, and then backward on the same data. The 
two results are combined to form the interpolated predic- 
tion per (24). 

I I I I I 
UpperBound ~ 

ACM Interpolator ----- 
ACM Predictor -----. 

Kalman Interpolator --..-.-..--- 

Kalman Predictor 

-20 -15 -10 -5 0 5 

Input SNR (dB) 

Fig. 6 Known Statistics - Interpolator 
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Simulations were run on the same AR model for interfer- 
ence given in the previous section. Figure 6 gives results for 
interpolated filtering over predictive filtering for the known 
statistics case. The filters were run forward and backward 
for all 1500 points in the block. Interpolator SNR gain was 
calculated over the middle 500 points (when both forward 
and backward predictors were in steady state). The results 
for the predictors reflect the last 500 points. All values 
represent averages over ten independent simulations. All 
filters used total tap lengths of 10. 

B. Adaptive Nonlinear Block Interpolator 
As mentioned previously, linear interpolators were found 

to offer better SNR improvement than linear predictors [4], 
so the question arises as to  whether an interpolating version 
of the nonlinear ACM adaptive filter gives similar improved 
performance over the ACM predictor. As seen in Figure 2, 
the margin for improvement in the ACM filter for the given 
interferer is not large, but if the additional complexity is 
not excessive, the added gain could be worthwhile. 

Fig. 7 Linear Interpolator 

An FIR version of the linear interpolator is given in Fig- 
ure 7. The equations for the interpolator are now given as 
follows. 

XI, = [ Z k - L  e .  Zk-1 z k + 1  . . . Zk+J5IT (26) 

O k  = [ U , k  * . .  L 1 , k  al,k ... UL,kIT (27) 
where we set a-+ = a+ to ensure a linear-phase filter. 
The LMS algorithm is otherwise unchanged. When com- 
paring the interpolating and predicting filters, the same 
number of tap weights is used. In the first case the taps 

In the second case all the taps precede the current sample. 
The ACM predictor is effective because it uses the inter- 

ference prediction at time k ,  &, to generate a prediction 
of the observation less the SS signal, Zk. This estimate Zk 
is used in subsequent samples to generate new interference 
predictions. Initially the values of Zl through ZL are set 
equal to the observation at  that sample. As time progresses 
each Z is generated by the previous prediction per 

are divided half before and half after the current sample. 

where ~2 is a windowed average of the innovation variance. 

The previous explains why the ACM filter cannot be 
cast directly in the interpolator structure seen in Figure 7. 
Estimates of Z are not available for samples that occur after 
the current sample. However, an approach similar to the 
one for the known statistics ACM interpolator can be used. 
In this approach the data is segmented in blocks and run 
through a forward filter of length L to give predictions 2: 
and Zi .  The same data is run through a backward adaptive 
ACM filter with a separate tap weight vector, also of length 
L,  to generate estimates 2; and Zi .  

/ I  I I I I I I I  
. ~ . ~ . ~  ~ ........... ~ .... 
._.I. :.:.:. ?...i...i .... :...:...i - extra -- L- 

. . . .  
I , - - -  ...... ‘--I-----,- 

I , _ _ _  , , . . . . - - - -_ - 
- _c Block Length 

Block Interpolator 

Fig. 8 Nonlinear Block Interpolator 

After these calculations are made for the entire block, 
the data is combined to form an interpolated prediction 
per the following equations. 

. 1  
2; = + 2 i )  

Equation (24) would be the more accurate method to pro- 
duce the estimate z^k, however by the symmetry of the prob- 
lem and for parameters used in our simulations, (24) is well 
approximated by (29). The next block of data follows the 
same procedure. However, when the next block is initial- 
ized the previous tap weights are used to start the forward 
predictor and the interpolated predictions T are used to 
initialize the forward prediction 2f. 

This “head start” on the adaptation can only take place 
in the forward direction. We do not have any information 
on the following block of data to give us insight into the 

is less reliable than the forward prediction. To compen- 
sate for this effect, consecutive blocks are overlapped, with 
the overlap being used to allow the backward predictor 
some start up time to begin good predictions of the spread 
spectrum signal. This method of structuring, the data is 
illustrated in Figure 8. 

Results for the same simulation when the statistics are 
unknown are given in Figure 9. The adaptive interpolator 
had a block length of 250 samples, with 40% (100 samples) 
being overlapped. That is, for each block of 250 samples, 
150 interpolated estimates were made. Results given in 
Figure 9 are for averages over ten trials, with the SNR 

backward prediction. Therefore the backward predictiofi 
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Fig. 9 Adaptive Filtering - Interpolator 

improvement calculated as a sample average of the last 
500 points. The filter was run for 3000 samples. 
For the case of known statistics, the ACM predictor al- 

ready performs well, and there is little margin for improve- 
ment via use of an  interpolator. The adaptive filter shows 
greater margin for improvement, on which the interpola- 
tor capitalizes. However, in either case, the interpolator 
does offer improved phase characteristics and some perfor- 
mance gain at the cost of additional complexity (less than 
three times as many operations) and a delay (due to block 
length) in processing. The delay should be inconsequential 
in most spread spectrum applications and, depending on 
the hardware implementation of the ACM filter, the added 
complexity may also prove to be acceptable. 

V. MULTIPLE ss USERS 

A .  Nonlinear Filter 
The Masreliez filter equations can be applied to the case 

of more than one spread spectrum signal. To consider this 
situation, we use the same discrete time model of the sys- 
tem given in (3)-(4), i.e., Zk = sk + 'ik + m. However, 
in this case, the spread spectrum signal 8 k  is the sum of 
N independent, equiprobable, binary, antipodal random 
variables and is binomially distributed. (We assume for 
tractability that the spread spectrum users are chip syn- 
chronous.) The measurement noise is the sum of AWGN 
and the (binomially distributed) spread spectrum signal, 
and its distribution is a binomially weighted Gaussian sum. 
The ACM filter for this distribution of the SS signal is de- 
rived, assuming that all users are received with the same 
(unit) power. By the Masreliez approximation, the state 
has a normal density when conditioned on the previous 
observations, ie., p(Hg,) = N(H&, H M k H T )  given za 
through .?&-I. Therefore the distribution of the current 
observation, conditioned on previous observations, is also 
a Gaussian mixture. 

\ /  j=1 

equations for the Masrelies nonlinearities. 

where f(.) is given by: 

Equation (32) is a smooth quantizer that returns an esti- 
mate of the SS signal. When the variance is high, this func- 
tion is nearly linear between the extreme values of -N and 
N. When the variance is low, it acts like a step function 
taking values { - N ,  -N+2,. . . , N - 2 ,  N } .  The nonlineari- 
ties in (32) and (33) reduce to the tanh and sech2 functions 
when N is unity. 

As the number of SS users increases, the total power of 
the SS signal grows. One would expect that as the power 
increases, the SS signal is even more easily distinguished 
from the noise and the Masrelies filter will track sg with 
greater accuracy. Contrast this with the performance of 
the Kalman (linear) filter where the increased power of the 
SS signal causes the measurement noise to be even more 
highly non-Gaussian. Its performance will degrade as the 
number of users increases. 

B. Offset Problem and Compensation 
Simulations were run for total input SNR of -20dB for 

the case of known statistics with the same AR model for 
the narrowband interference, letting the number of spread 
spectrum users vary. Results for runs of 10,000 samples 
are given in Table 1, where the increase in output SNR 
was measured in the steady state, ie., over the last 1000 
samples. These results reflect averages over 4000 indepen- 
dent realizations. 

The errors that are seen to occur in this first implementa- 
tion of the Masreliez filter are due to  improper referencing 
of the nonlinearity in (32). It can be shown that (given 
the filtered estimate f is initially set to the first p obser- 
vations) the first soft decision feedback estimate of the SS 
eignal is biaeed by a linear cambination of the firet p SS 
signal values. This leads to an initial error in the estimate 
of the interferer. The interfering signal is tracked well, but 
there is an offset in the predicted value H z k  due to an in- 
correct first estimate of the spread spectrum signal. Once 
the offset is removed, the system should continue to  make 
very good estimates of the predictable narrowband signal. 
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Tab. 1 Performance without offset being removed 

1 user - Kalman ----- 
2 users - Kalman ~ - 

10 Users - Kalman ............ - 

Therefore simulations were redone estimating the offset 
a t  the start of operation and later subtracting it from our 
estimate of the interferer. After monitoring that the offset 
is indeed gone, we continue normal filter operation. Results 
are given in Figure 10. In this case the simulations were 
run for 1500 samples for 1 and 2 users, for 4000 samples 
for 10 users, for 5000 for 25 and for 7500 samples 50 users. 
All results are from averaging over the last 500 points of 
the run, and averaged over 4000 independent simulations. 

C. Adaptive  Filtering 

Adaptive filtering for the case of multiple SS users fol- 
lows directly from the case of a single user. Again, there 
is an offset present due to the nonlinearity, which must 
be estimated and removed. Adaptation times were longer 
for multiple users, but performance tracked well with the 
results obtained for known statistics. 

Simulations were run using the same AR parameters and 
the new adaptation algorithm given in section 3.3. After 
letting the adaptation run for some time, the offset was 
estimated and removed while adaptation continued. 

Results are given in Figure 11 and reflect averages over 
the final 500 samples (in steady state) which were in turn 
averaged over 400 independent realizations. The filters 

- 40 

all cases - Nonlin F'red 
1 user - Lin F'red ----- 

10 users - Lin F'red ~ 

25 users - Lin F'red 
50 users - Lin F'red 

............ 

30 

20 

10 

25 users - Lin F'red 
50 users - Lin F'red 

............ 
-1.. :::::.-. ... L... ...... 

1 = r z ~ =. 

-..___ 
......... .r=.*..*T, *. ---__ 

30 

~ ---___ 

I I 

-20 -15 -10 -5 

Input SNR (dB) 

Adaptive Filtering - Multiple SS Users Fig. 11 

were allowed to run for 7,500 samples for 10 SS users, 
10,000 samples for 25 users, and 12,500 for 50 users. 

VI. ANALYSIS OF NONLINEARITIE:; 
Many fundamental results for the ACM filter remain open 
questions. In the case of Kalman filtering, it is well known 
that the covariance matrix will reach a steady state value 
when the magnitudes of the eigenvalues of the [state transi- 
tion matrix are less than unity. No similar criterion is know 
for the ACM filter. As pointed out by one of thie reviewers, 
potential applications will depend upon the convergence 
speed of these nonlinear algorithms. Some preliminary dis- 
cussion of convergence is included in this section, however 
the discovery of explicit convergence criteria and character- 
ization of the rate of convergence are open research topics. 

The simulations reported here are a dramatic demonstra- 
tion that the ACM filter can outperform the Kdman  filter. 
To what extent are they dependent on the parameters cho- 
sen for the simulation? Clearly the nonlinear method is 
effective because the measurement noise, AWGN and SS 
signal, is non-Gaussian. If the SS signal actual'ly lies below 
the noise floor, then the Gaussian assumption is more rea- 
sonable, and the Kalman filter may actually outperform 
the nonlinear filter. Simulations show that for ~2 > 1 
the Kalman filter and the nonlinear filter ha8ve virtually 
the same performance, and for values just below one the 
Kalman sometimes has a slight edge in performance. Note, 
however, that the ACM filter is never significantly outper- 
formed by the Kalman filter since it reduces to the Kalman 
filter in the limit of vanishing signal power. 

Similarly, the disparity of bandwidth between the exist- 
ing users and the spread spectrum signal is essential for 
this filtering method and altering the AR model param- 
eters (poles) will impact performance. Until criteria are 
known to guarantee (in a probablistic sense) that the ACM 
performance will be better than that of the Kalman filter, 
we can only extend these simulation results by appealing 
to our intuition that the conditions of 1) low background 
(AWGN) noise relative to the spread spectrum signal and 
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2) the narrow bandwidth of the interferer relative to the 
spread spectrum signal are favorable conditions for this 
scheme to work. 

We endeavor in the next sections to discuss how the data 
dependence of the ACM covariance update equation makes 
resolution of these questions a difficult analytical task. We 
draw on our experience with the simulations to make some 
observations about the behavior of the ACM filter. 

A .  ACM vs.  K a l m a n  Performance 
We first address the issue of the relative performance of 

the ACM and Kalman filters, using the covariance of the 
predicted estimate as our metric. For Kalman filtering the 
covariance matrix is given by the following recursion. 

(35) 

As can be seen, this discrete time Riccati equation is in- 
dependent of the data and the performance of the Kalman 
filter can be calculated offline from any observations. This 
is not the case for the ACM filter, whose covariance is gov- 
erned by 

where f(.) is given by (34). The argument of this nonlin- 
ear function f(,) is dependent on the data, making this a 
nonlinear stochastic difference equation. 

We have seen in the simulations that the ACM filter 
significantly outperforms the Kalman filter for the case of 
small ambient noise, One would then expect that as the 
ambient noise becomes vanishingly small, the covariance of 
the Kalman filter would exceed that of the Masreliez ACM 
filter. However, due to the data dependence of the Masre- 
liez filter this property can only be stated in a probabilistic 
framework. To demonstrate this, we will assume that the 
Kalman and Masreliez filters are run on the same data, 
therefore with the recursions of equations (35) and (36) 

Assuming that c r i  -+ 0, for the Masreliez covariance to be 
uniformly smaller we need to demonstrate that 

For the case N = 1, this reduces to a requirement that 

Given the initial value Cop, there is always an EO suffi- 
ciently close to zero for which this inequality will not hold. 
The fact that the simulations always lead to a steady state 
value for the covariance is the result of the probability be- 
ing extremely low that + is in a sufficiently small neigh- 
borhood of zero. Since it is not true that the ACM filter's 
conditional covariance is less than that of the Kalman fil- 
ter's a t  each sample, we must move to comparison of steady 
state values of the covariance. 

0" 

B.  Steady State  Solut ion for ACM Covariance 

As mentioned earlier, no criterion is known for the con- 
vergence of the ACM filter covariance to a steady state 
value. Indeed any such result would be a probabilistic con- 
vergence. During simulations we observed that the ACM 
covariance converged to a value equal to that of a Kalman 
filter with an input composed solely of the narrowband 
interference and AWGN. That is, in the steady state the 
ACM performed like a Kalman filter acting on observations 
from which the spread spectrum signal had been removed. 

By comparing equation (35) with N = 0 (Kalman filter- 
ing with the spread spectrum signal removed) and equa- 
tion (36) (the ACM filter), we see that for these equations 
to reach the same value we should have 

Recall though that the simulations were run for benign 
SNR regions ( L e . ,  u i  << 1). The approximation in equa- 
tion (42) would not be valid for 0: sufficiently close to 
one. So let us look at the relationship in equation (43) as 
0; --f 0. 

For the case N = 1, f(.) is the sech function. The rela- 
tionship in equation (43) for N = 1 is plotted in Figure 12 
for a continuum of variances ( H M k l k - l H T )  and several 
values of the innovation ( € l e ) .  If the ACM filter is accu- 
rately tracking the interferer, the innovation is just the 
spread spectrum signal and = 1, As long as the error 
in the prediction is less than one half (which for N = 1 
means that < .5) our approximation is well justified. 
We see in the next section that this result is consistent 
with a model of ACM filter performance characterized by 
very low probability of mrs-estimating the spread spectrum 
signal (as u i  + 0). 



IEEE TRANSACnONS ON COMMUNICATIONS, VOL 42, NO 21314, FEBRUARYMARCHIAPRIL 1994 1978 

f 

Fig. 12 

1 

0.8 

0.6 

0.4 

0.2 

0 
0 0.2 0.4 0.6 0.8 1 

2 variance 

Plot of f( 3)  versus CF: for various values of lek I 
Y 

C. Performance o f  ACM Filter in No Noise 
In this section we investigate the performance of the filter 

in the limit as CF: + 0 and b + 00 so that the filter is 
operating in steady state and in the absence of AWGN. The 
filtered estimate of the interferer is given by the following 
equation: 

1 
0, + H M k j k - i H T  

& = @ & - l t '  2 

. M k l k - 1 H T ( Z k  - E@)%,-, - s k )  (44) 

where s^k is the estimate of the spread spectrum signal given 
by the nonlinearity 

(45) 

Letting 0: t 0, 

(47) 

Let us examine only the first component of kk which is the 
filtered estimate of the interferer, say &. 

;k = H g k  

Zk  - f k  (48) - - 

So in the case of no AWGN, estimating the interference is 
equivalent to estimating the spread spectrum signal. So 
next we look at  the estimate &. 

Let q5 be the vector of coefficients for the AR process, i.e., 
i k  = $ [ i k - l . .  . i k - p l T  + e k l  then we can continue to sub- 
stitute into (49) for ' k - 1  for p times in order to eliminate 
ik, until we get ' k  equals 

To continue the analysis we assume that the filter has been 
running long enough to arrive in the steady state and that 
the steady state value of H M k l k - l H T  is small. In this 
case, the nonlinearity is operating in the regime of a step 
quantizer. For N = 1 this means that f(.) acts like the 
sigmoid function, s^k equals 

Sgn(ek + s k  - 4 ' [ ( s k - 1  - s^k-1) * * - ( s k i p  - s k - p )  1') (51) 

Clearly if there are no errors in the previous p estimates, 
s^k = sgn(ek + sk). For the case of a very narrowband AR 
process (e.g., double eigenvalues close to 1 for an order 2 
process), the Gaussian noise driving the process will have 
power ui very small, even for large input interference. This 
means that the probability of error is characterized by a 
small value, Q(l/u,") (the complementary error function), 
in the steady state when no errors have occurred in the 
previous p samples, and a probability near one half after 
the next error does occur. Once the filter starts to make 
errors, the covariance will increase, driving the nonlinearity 
out of the sigmoidal function until steady state behavior 
can be reacquired. 

' VII. CONCLUSION 
In this treatment we have discussed the use of nonlinear 
techniques in systems with overlaid narrowband and spread 
spectrum signals. Simulations confirm that significant in- 
creases in the SNR at the SS receiver can be achieved when 
using nonlinear vice linear filtering, especially in the case 
of multiple spread spectrum users. Implementation of the 
nonlinear algorithm would require greater complexity than 
its linear counterpart which is typically encompassed in 
a single DSP chip. The functions tanh and sech would 
either have to be calculated or stored in memory as a look- 
up table. As mentioned in the text, the interpolator would 
require on the order of three times as much calculation, 
and for multiple SS users a separate algorithm would be 
required to estimate the offset in the decision feedback. 

The criterion for evaluating the performance in this pa- 
per was the SNR improvement. While a higher input SNR 
will lead to a lower BER, the quantitative improvement 
will not be as great. The processing gain of the SS sig- 
nal will provide some interference suppression in its own 
right, for which both linear and nonlinear processing will 
benefit. This is a topic for further investigation. Also, 
because the proposed applications for commercial use of 
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spread spectrum will involve the overlaying of S S  on exist- 
ing narrowband users, the effectiveness of these techniques 
against several interferers should be investigated. 

The study of the nonlinear stochastic difference equation 
describing the ACM covariance poses a research topic in its 
own right. Criteria to assure a probabilistic convergence 
of ACM covariance and a characterization of the conver- 
gence rate are needed, as well as convergence analysis of 
the adaptive nonlinear filter. 

Finally, aside from the predictability of the narrowband 
process, the nature of the interferer itself may provide a 
key to better suppression techniques. Most existing band 
occupants will be digitally modulated waveforms of some 
variety. A more accurate model of the interferer may aban- 
don the AR process in favor of a stochastic model of a digi- 
tally modulated signal. Multiuser detection could possibly 
be applied to suppress such narrowband users by modeling 
these signals as such. 
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