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Other ways of interpreting the operations of the circuit 
in Fig. 2 are possible. For instance the circuit may be 
viewed as one of solving the polynomial equation 

UI) + u1x + a$?? + * * . + atd = 0 

with the x’s substituted by 1, IY, a’, . . . , an-l, respectively. 
In fact, an alternative circuit could be designed accord- 
ing to the polynomial 

u&Et + a&l + . * * + a, = 0, 
but it would require either the data in the buffer to be 
lower-order first, or the ak-multipliers be replaced by 
ak-dividers. 
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Summary-A binary superimposed code consists of a set of code 
words whose digit-by-digit Boolean sums (1 + 1 = 1) enjoy a pre- 
scribed level of distinguishability. These codes find their main 
application in the representation of document attributes within an 
information retrieval system, but might also be used as a basis for 
channel assignments to relieve congestion in crowded communi- 
cations bands. In this paper some basic properties of nonrandom 
codes of this family are presented, and formulas and bounds relating 
the principal code parameters are derived. Finally, there are de- 
scribed several such code families based upon (1) q-nary conven- 
tional error-correcting codes, (2) combinatorial arrangements, such 
as block designs and Latin squares, (3) a graphical construction, and 
(4) the parity-check matrices of standard binary error-correcting 
codes. 
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I. INTRODUCTION 

HE FOLLOWING two coding problems arise in 
the representation and handling of data in a 
certain type of information retrieval system, to 

be described in detail below. Let the sum of two n-digit 
binary code words be their digit-by-digit Boolean sum; 
for example, 

011001 
v010010~ 

011011 

We seek a large number N of code words such that, for 
a given small positive integer m, every sum of up to m 
different code words is distinct from every other sum 
of m or fewer code words (Problem I), or logically in- 
cludes no code word other than those used to form the 
sum (Problem 2). It will be shown shortly that these two 
problems are intimately related, hence their simultaneous 
consideration in this paper. 
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A code whose code words satisfy the condition of 
Problem 1 will be said to be uniquely decipherable of 
order m, abbreviated UD,. This name derives directly 
from the definition, which guarantees that any sum 
word composed of up to m constituent code words of a 
UD, code can be decomposed into constituent code words 
in only one way. For example, the list of eight 7-digit 
code words, 

11 000 00 
10 100 00 
01 001 00 
00 110 00 
00 011 00 
00 100 10 
00 001 01 
00 000 11 

not only contains no duplicates, but when augmented 

with all 8 
0 2 

= 28 pairwise sums of code words still con- 

tains no duplicates. (This fact can be verified by listing 
all of the pairwise sums, or more easily by checking 
separately the manner in which sums having three and 
four ones are formed.) Thus, this set of eight code words 
constitutes a UD, code. 

A code whose code words satisfy the condition of 
Problem 2 will be said to be zero-false-drop of order m, 
(ZFD,). This name derives from the retrieval applica- 
tion, to be described in the next section. The three 3- 
digit code words having a single one, namely, 

100 
010 
001, 

clearly form a ZFD, code, since no pairwise sum such 
1 10 can logically include the other code word, 0 0 1. 
In fact, somewhat trivially, this code is also ZFD,. 
Note that it is also UD, and UD,. 

In Section II there is a description of the origin of the 
need for superimposed codes and their applications-a 
discussion which may be skipped by the reader interested 
in codes only for their own sake. Basic properties of 
these codes and bounds on the code size N in terms of the 
order m and the code-word length n are derived in Sec- 
tions III and IV. Several families of codes of arbitrarily 
large size and order are then developed in Sections III-VII. 

II. APPLICATIONS 

A. Retrieval Files 

A superimposed code such as a ZFD code may be 
utilized in an information retrieval file as follows [I]-[3]. 
Before encoding, the retrieval file consists of a long list 
of entries, one for each document in the file. Each entry 
contains an identification number of the document (for 
later physical retrieval), plus a short list of attributes, 
called descriptors, which are selected from a descriptor 
dictionary to describe the contents of the document 

in question. A typical dictionary might contain a number 
N of descriptors between 10’ and 104, and the maximum 
number m of descriptors per document would normally 
fall between 5 and 15 for a given file. The file size is 
essentially unlimited. 

An inquiry to such a file takes the form of a prescribed 
list of “quiz” descriptors, and a test as to (a) whether 
and (b) which documents in the file have included in 
their associated descriptor lists all of the descriptors on 
the quiz list. Thus, mechanization of the file and the 
inquiry process requires that all of the document data 
be encoded so that this inclusion test can be performed 
rapidly and with a minimum of equipment. Methods 
are already available for efficiently encoding the identi- 
fication numbers, and for determining which documents 
(Step b of the test) respond to an inquiry [4], if a means 
is available for determining only whether or not any 
documents respond (Step a). ZFD, codes are proposed 
for this latter purpose, for encoding the descriptor por- 
tions of each document entry in the file. 

To this end let each of the N descriptors in the diction- 
ary be assigned a unique n-digit binary code word of a 
ZFD, code. The descriptor list associated with each 
document is then represented by a new n-digit word, 
which is obtained by forming the digit-by-digit Boolean 
sum of the code words of all of its constituent descriptors. 
The code words of the quiz descriptors are summed into 
a quiz word in identical fashion. It then follows directly 
from the ZFD, property of the code that, as long as no 
more than m descriptors are associated with any one 
document, the quiz word is logically contained in a particular 
document word if and only if all of the quiz descriptors 
are included among the descriptors associated with the 
document. If this inclusion test is satisfied for any one or 
more document words in the file, in response to an in- 
quiry, then it may be arranged so that an output is 
provided from the file. Otherwise, no output is obtained. 

Various electrical and mechanical realizations of this 
type of retrieval file have been constructed or proposed, 
[5]-[7] and several are commercially available. For ex- 
ample, if edge-notched cards are used, each document is 
represented by a card which carries the binary sum word 
as a pattern of notches over n possible notch positions 
on one or more edges of the card, the bottom edge, say. 
An inquiry can be made by resting a stack of such cards 
on a set of small bars that are raised up underneath the 
stack in those notch positions corresponding to the 
location of ones in the quiz code word. All the cards 
having notches in at least these positions will remain 
stationary, while the unwanted cards will be raised, and 
can be separated from the desired set. 

Codes presently in use for such retrieval files are 
generated by a random selection process [l]-[3]. Each 
descriptor code word is formed by placing a few ones 
(typically, three or four) randomly in an n-digit binary 
field. The proper value of n for this random superimposed 
code can be determined by statistical analysis, to reduce 
to a prescribable minimum the probability that an un- 
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wanted document will drop out during an inquiry [8]-[12]. 
Such a “false drop” could occur if a sum code word 
logically included one or more code words other than those 
used to compose it. 

While a few false drops can be easily weeded out by 
the user of a file, they are nevertheless a nuisance, and 
their occurrence may become intolerable if the number 
of them becomes too great. Because of the simplifying 
assumptions made in even the best statistical analysis of 
random superimposed codes (equal descriptor usage, 
unrestricted dictionary size, uncorrelated descriptor se- 
lection), it is not possible to guarantee a desired minimum 
false-drop probability without very conservative design 
choices. Even so, a random code will always have its 
deviates from the mean performance. Thus, a particular 
new code can be expected to have a few bad code-word 
combinations, and there is always a chance that a new 
code will have poor over-all performance characteristics. 
Finally, another shortcoming of random codes is that a 
search with one or more negated descriptors cannot be 
performed without risking “false misses,“-that is, re- 
jection of desired items. ZFD codes do not have this 
problem. 

It is primarily to overcome these shortcomings that 
the new family of superimposed codes has been studied. 
Just as with conventional error-correcting codes, they 
provide completely error-free performance up to a certain 
level of activity. Analogously, the random superim- 
posed codes correspond to random conventional codes 
such as have been discussed by Shannon [13] and Elias [14]. 

It is also true of randomly generated superimposed 
codes that once a sum code word is formed for a docu- 
ment, it is not generally possible to determine directly 
from this sum all of the constituent descriptors. That is, 
the deciphering of sumwords is, in general, not unique. 
On the other hand, it will be shown in the next section 
that any ZFD, code is automatically a UD, code, so 
that the sum code words of the new codes are automatically 
decipherable. 

B. Data Communication 

Certain crowded communication bands, such as the 
amateur band, telephone trunk lines, and certain military 
radio bands, are characterized by a limited number n of 
channels but a larger number, N, of low-duty users. 
Thus, it is not possible to assign for all time one channel 
to each user, and some stratagem must be employed to 
make the assignments variable and on demand. The usual 
practice is to employ a master control unit, a switching 
central, or an ‘LoperatorJ’ to keep track of which channels 
are available, and to assign them as needed. In the amateur 
bands, centralized control is dispensed with, in favor of 
the less reliable practice of letting each user locate a free 
channel as best he can. 

If one could be assured that no more than m users 
would be needing the band at the same time, each user 
could be permanently assigned a set of channels on which 
he was instructed to transmit and/or listen simultaneously. 

If the assignment were made in accordance with a ZFD, 
code, this user could be assured that his set of assigned 
channels would never all be in use at the same time by 
any other user or group of users. In this manner, he 
could communicate at any time without consulting a 
master control unit, subject only to this limitation on 
the maximum number m of simultaneous users. If this 
limit is not already imposed by the statistics of use of a 
particular system, it may not be unreasonable to provide 
a rudimentary form of master control which notifies all 
users only when the band is full. 

The use of broadbanding techniques for the allevia- 
tion of crowding in busy communication bands was 
argued by Costas [15]. This suggested application of 
ZFD, codes might provide a means whereby the prac- 
ticality of the broadbanding philosophy may be tested.’ 

C. Magnetic Memories 

It has been shown [17] that the problem of designing 
a certain family of multiply-threaded magnetic-core 
matrix memories can be expressed as the search for a 
suitable winding pattern which can be expressed in an 
N-by-n winding matrix A. The binary entries of this 
matrix describe compactly which of the n drive windings 
are threaded through which of the N cores which com- 
pose the memory array. The reader is referred to the 
literature for a detailed formulation of this problem in 
matrix terms. We note here only the close relation be- 
tween the principal design parameter of these arrays, 
the selection ratio s, and the order m associated with the 
matrix A when it is 
posed code. In terms 

used as the basis for a superim- 
of the so-called excitation matrix, 

with elements Xii (i, 
ratio is 

A = AA”, 

j = 1, 2, * .. N), the selection 

It is shown in Section IV that the matrix A is a general 
representation of a binary superimposed code whose 
maximum order is bounded by 

and (later) that this inequality may frequently be re- 
placed by an equality. As a result of this correspondence 
between the problem of memory design and the problem 
of developing desirable superimposed codes, it should be 
possible to make use of results obtained independently 

1 Another communications application related to binary super- 
imposed codes has been proposed by Cohn and Gorman [16], and has 
to do with the use of a suggested family of codes having limited 
superposition properties for the selective calling of stations in a 
network. 
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on either problem to generate additional solutions to the 
other. 

In addition, it was shown by Minnick in 1957 that the 
higher selection ratio obtainable-in a multiply-threaded 
memory may be exchanged for the property of simul- 
taneous access-that is, the ability to apply simultaneously 
more than a single address, and (with proper readout 
circuitry) to read out simultaneously the contents of the 
memory at all of these addresses [18]. In fact, it is this 
particular use of the additional windings that conforms 
most naturally to the superposition properties of the rows 
of an A-matrix (code words of a superimposed code). 

Many magnetic-core memory arrays may also be used 
as the basis for the design of access switches, which differ 
from memories mainly in the addition of extra bias or 
inhibit windings and currents, and in the manner of 
use [19]. The principal design parameter of access switches 
is the load-sharing factor, which is normally equal to the 
diflerence between the two quantities which form the 
quotient in the above expression for s. However, we can 
still expect a mutually beneficial exchange between 
the catalogs of useful access-switch designs and binary 
superimposed codes, even though the notions of efficiency 
do not correspond exactly for the two problems. 

III. THEORETICAL RESULTS 

In this section ZFD, and UD, codes are given mathe- 
matical definitions, and their interrelationship is shown. 

The superposition sum z = x V y (designated as the 
digit-by-digit Boolean sum up to now) of two n-di- 
mensional binary vectors x = (x1, x2, . . . x”) and y = 
(Y’, Y2, * * * y”) is defined by: 

xi = 
i 

0 if xi = yi = 0 
i = 1,2, -.- n. 

1 otherwise 

Also, a vector x is said to be included in a vector y if an 
only if 

xvy = y. 

From a given code C,, which is a collection of N n- 
dimensional binary vectors called code words, we may 
readily construct for k = 2, 3, * *. N the lath super- 
position sum set Ck, which is the collection of all of the 
superposition sums of these code words of C,, taken 

exactly Ic at a time. Thus, the set C, contains N 
0 k 

vectors, 

which for k > 1 are not necessarily all different. In 
considering the sequence of sets C,, C,, . . . C,, . . + , we 
are particularly interested in the value of k at which 
duplicate vectors first appear, either within the same set 
C,, or between Ck and some earlier set. Toward this 
end, we have the following theorem and corollary. 

Theorem 1: If the sets C,, C,, * * * C,,,+, are disjoint 
(that is, if no vector occurs in two different sets of this 

list), then the set C, contains exactly N 
0 

different vectors, m 

Proof: Suppose that two of the vectors in C, 

were equal: 

Xl v x2 v * - * v x, = y1 v y2 v * ’ * ym 

where x1, x2, . . . x,, and yl, yZ, . . . ym are all code words 
in 6,. Then 

yi v x1 v x2 v *. * v 2, = 21 v x2 v * ‘. v x,, 

for every j = 1, 2, * * * m. But C,,, and C, are disjoint, 
so that each of the code words yl, yz, . . . ym must belong 
to the set of code words (x1, x2, . . . x,), Thus, there are 

no duplicates in C,, and C, must contain 
0 

z different 

vectors. 

Corollary: If the sets C,, C,, . . . C,,, are disjoint, 
N then the set C, contains exactly k 

0 
different vectors 

for k = 1, 2, . . . m. This theorem and corollary are used 
below to relate zero-false-drop and uniquely decipherable 
codes. 

If only c,, c,, * * * C, are disjoint, then C, need not 

contain N 0 elements. For 
m 

sisting of the seven cyclic 
has C1, C,, and C, disjoint, 

elements, rather than 7 
0 3 

C2’ . *. C, are disjoint and 

example, the code C1 con- 

permutations of (1101000) 
but C, contains only eight 

= 35. Furthermore, if C,, 

C, contains N 
0 m 

elements, 

Cl, c2, *a* cm+, need not be disjoint. For example, the 
code C, with elements a = (1100)’ b = (0011)’ and 
c = (0110) has for C,, the sumvectors a V b = (1111)’ 
a V c = (1110)’ and b V c = (0111)’ and for C, the 
single element a V b V c = (1111): the sets C, and C, 

are disjoint, CZ contains 3 0 2 
= 3 elements, but C, and C, 

are not disjoint. 
A ZFD, code may now be defined to be a set C, of code 

words for which no sum y1 V yZ V . . . V yi of j 5 m code 
words is included in any other sum x1 V x2 V . - . V xk 
of Ic < m code words, unless yl, yz, . . . y, all belong to 
the set of code words x,, x2, . . . x,+. Clearly, a code that 
is ZFD, is also ZFD, for 1 < k < m as well. An equivalent 
and somewhat more intuitive definition follows from the 
next theorem: 

Theorem 2: A code is ZFD, if and only if no sum 
x1 v x2 v ... V xk of k 5 m code words includes any 
other code word yi not used in this sum. 

Proof: The sufficiency follows directly from the defi- 
nition. If the sum x1 V x2 V . . . V xk of k < m code 
words includes no other code word yi, then it cannot in- 
clude a sum such as y1 V - - - V yi V . . . V yi of j < m 
code words, unless yl, yZ, . . . yi all belong to the set of 
code words {x1, x2, . . ’ x,}. 

In terms of the sequence of sets Cr, CZ, . *. CA, . . . , 
we then have the following theorem. 
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Theorem 3: A code Cl is ZFD, if and only if the sets 
Cl, cz, . * * Cm+l are disjoint. 

Proof: 

1) If the sets C,, C,, *. . C,,, are disjoint, then a code 
word y1 can be included in the sum x1 V x2 V . . . V xk 
for k < m only if y1 is one of the code words x1, 
x2, * * * Gn, so that C, is ZFD,. 

2) If C, is ZFD,, suppose that Cj and C,, for 
some 1 < j < k 5 m + 1, have a common 
element x1 V x2 V . . . V xi = y1 V yz V . ’ . V yk. 
But if each yi is one of the code words x1, x2, + . . xj, 
then we cannot have j < Ic, and thus C,, C,, . . . C,,, 
are disjoint. 

A UD, code may be defined to be a set C, of code 
words such that equality of any two sum vectors, each 
composed of no more than m code words, implies that 
the two sets of constituent code words of the sum vectors 
are identical. Thus Theorem 4 follows. 

Theorem 4: A code C, is UD, if and only if the sets 

Cl, cz, * ** C, are disjoint, and C, contains 
0 
z different 

vectors. 

Proof: 

1) Suppose that the sets C,, C,, . . . C, are disjoint 

and that C, contains N 
0 

different elements. Then 
m 

2) 

each set C, for 1 5 k < m contains 
0 
f different 

elements, and no two superposition sum vectors, 
each composed of no more than m code vectors 
but not composed of identical constituents, can be 
equal without contradicting either the condition 
that C,, C,, .a. C, be disjoint, or that Ck contains 

N 
0 

k different elements for 1 I 11 5 m. 

Suppose that the code C, is UD,. Since equality of 
two superposition sums of < m code words implies 
identity of the two sets of code words, Ct, C,, C, are 

disjoint, and C,, contains N 
0 

different elements. 
m 

The relationship between ZFD and UD codes now 
follows directly from Theorems 3 and 4, and may be 
summarized as: 

ZFD, + UD, ==+ ZFD,-l 

==+ UD,-l + ..’ + ZFD, ==+ UD,. 

Moreover, as shown earlier by counter examples in terms 
of the sets C,, the reverse implications do not in general 
hold: 

ZFDmA1 =H UD, =# ZFD,, etc. 

An alternative statement of the ZFD, condition is as 
follows. Imagine that the code words in C, are arranged 

as the rows of an N-by-n matrix A. Then theorem 5 
follows. 

Theorem 5: The code C, is ZFD, if and only if every 
subset of m + 1 rows of A contains an (m + 1)-columned 
identity submatrix. 

Proof: The condition that C, be ZFD, is equivalent, 
to the requirement that in each subset of m + 1 rows of 
A, no one row may be included in the sum of the other 
m. This will be the case if, and only if, each row of this 
(m + 1)-rowed submatrix has a one in some column fn 
which all other rows have a zero. Conversely, if every 
subset of m + 1 rows contains an identity submatrix of 
order m + 1, then no one of these rows may be included 
in the sum of the other m; hence, C, is ZFD,. 

IV. BOUNDS 

A weak upper bound on the size N of a n-digit UD, 
code can be obtained by merely counting the total num- 
ber of different vectors in the sets C,, C,, . . . C,, and 
noting that this number cannot exceed the number of 
nonzero, n-digit binary numbers: 

I 2” - 1. (1) 

Better bounds result through the use of some inter- 
mediate parameters. The number of ones in code word 
xi is called the weight wi of that code word, while the 
overlap Xii between two code words xi and xi is simply 
their dot product-that is, the number of digit positions 
in which both words have ones. It will be convenient to 
refer to the minimum weight wmin = Mini wi and the 
maximum overlap X,,, = Max<, i Xtj, i # j, where the 
Min and Max operations are taken over all N code words. 

niow if a given code has a maximum overlap x,,, for 
all pairs of code words, then no particular (X,,, + l)- 
tuple of ones (that is, no set of X,,, + 1 particular digit 
positions) can appear in more than one code word. The 
total possible number of such (h,,, + 1)-tuples over n 

positions is just and the ith code word 

accounts for just (hmsyk ,) of them. Summing over all 

N code words, then, we have the condition: 

If all code words have the same weight w, this bound 
reduces to 

Moreover, if wi 2 m X,,, + 1, then the ith code word 
cannot possibly be contained in the sum of any m other 
code words, since it overlaps each of these other code 
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words in no more than X,, positions. Thus, a code with 
minimum weight Wmin and maximum overlap A,,, is 
ZFD, for all m up to some value which satisfies 

(4) 

where the brackets denote the integer part of the quantity 
within. 

In terms of the A-matrix, we may observe immediately 
that the Xii are the off-diagonal elements of the N-by-N 
matrix 

A = AA’, 

while the wi are the diagonal elements: wi = Xii. There- 
fore, the search for an n-digit, N-word, ZFD, code C,, 
for which the lower bound (4) on the largest order m is 
maximized, is equivalent to the search for an N-by-n 
A-matrix which maximizes in A the ratio of the smallest 
diagonal element (less one) to the largest off-diagonal 
element. 

The following theorem provides a condition under which 
the order m of a ZFD, code is equal to the bound (4). 

Theorem 6: If every X,,,-tuple appears in two or more 
code words of a code, this code is ZFD, but not ZFD,+l 
for 

Proof: The code is at least ZFD, by the bound (4). 
But if every A,,,,,- tuple appears in two or more code words, 
then for any code word whose weight is Wi 5 (m + 1)X,,,, 
there can be found (m + 1) other code words whose sum 
contains it. Thus, the code cannot be ZFD,,, . 

If a code is ZFD, for a value of m higher than the 
minimum set by the bound (4), numerous overlap possi- 
bilities are ruled out by the presence of code words of 
weight less than m X,,, + 1. The following theorem 
shows this for the case of words with weight no greater 
than m. 

Theorem 7: If any code word of a ZFD, code has weight 
no greater than m, it must have a one in some position 
in which no other code word has a one. 

Proof: If not, this code word would be contained in 
some sum of m other code words, and the code would 
not be ZFD,. 

It follows directly that if all code words of a ZFD, 
code have weight Wi < m, then N < n; i.e., the number 
of code words is then no greater than the number of 
positions in an individual code word. Equality (N = n) 
is then achieved only if all code words have weight one.’ 

If some of the code words of a ZFD, code have weights 
no greater than m, say wi < m for i = 1, 2, *. . N,, then 
the number N of code words satisfy a revised condition 

2 However, UD,,, codes with w = m  and N > n do exist, as will 
be shown in Section VI. 

corresponding to (2), namely, 

This bound takes into account the fact that at least N, 
of the n positions are used only once in the code. In fact, 
any code word whose weight is no greater than m can 
have its weight reduced to one without reducing the 
order m of the code, since each such code word has a one 
in some position in which no other code word has a one. 
Similarly, any code word whose weight exceeds m X,,, + 1 
can have its weight reduced to this value, by arbitrary 
deletion of ones, without reducing the order m of the 
code. If the value of X,,, is decreased as a result of these 
deletions, the process can be repeated. Thus, given any 
ZFD, code, another possibly different ZFD, code having 
the same values of n, N, and m, but with all weights wi 
equal to unity or satisfying m + 1 I 20~ I m X,,, + 1, 
can be derived. 

Clearly, then, the elimination of any weight-one code 
word and its corresponding digit position from a ZFD, 
code will reduce by one both the n and N-values of the 
code, without changing its order m. In a similar manner, 
any ZFD, code may be augmented with any number of 
weight-one code words, to increase both n and N by the 
same amount, without changing the order m of the code. 
While this process of “linear” decrease or increase may be 
useful in obtaining codes of particular desired sizes from 
other known codes, its inefficiency indicates that a search 
for more perfect codes should exclude weight-one code 
words, allowing only weights in the range 

m + 1 _< wi < mX,,, + 1. 

If all code words have the same weight w, then the 
bounds (2) and (4) above reduce to 

and 

w-l 
m> - 1 1 x . max 

(5) 

(6) 

Johnson has provided some refinements of (5). In our 
notation, these read: 

when w2 > nX,,,. 

Also, interchanging xero.s and ones, 

N(n, w, A,.,) = N(n, n - w, n - 2w + X,,,). 

In the special case X,,, = 1, the weight reduction 
process described above yields weights of unity and 
h max + 1 = m + 1, and no others. “Linear” deletion of 
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the weight-one words then yields a constant-weight code 
which achieves the lower bound (6): m = w - 1. These 
codes are discussed in detail in Section V. 

Finally, for a constant-weight UD, code, the bound 
(1) may be refined to 
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imposed codes. Since these codes contain the zero vector, 
they are only UD,, and not even ZFD,. Even with the 
zero vector deleted, most of them are not ZFD,, since 
the code usually contains a vector of large weight (such 
as 111 *.. 11) which includes at least one of the vectors 
of small weight. 

If all of the code words of a ZFD, code are constrained 
to have the same weight, however, its overlap X,,, may- 
be related to the minimum number d of differing digits 
between any pair of code words; namely 

which allows the bound (6) to be written 

in which the right-hand sum expresses the number of 
possible n-digit binary vectors whose weights lie be- 
tween w and mw. Even if the weight is not constant, then 
for any UD, code we have the inequality 

which may be verified by showing (in a comparison of the 
right-hand side with (1)) that the presence of any code 
words of weight wi < m makes it easier, not harder, to 
satisfy the inequality. 

V. CONSTRUCTION OF ZFD CODES 

A. Codes Based Upon Conventional Binary Error-Cor- 
recting Codes 

Our approach to the problem of constructing ZFD 
codes is to search among the known families of conven- 
tional error-correcting codes for those which have desir- 
able superposition properties, or which can be modified 
to have these properties. This search has yielded a 
number of potentially useful code families of arbitrary 
order and of arbitrarily large size and length. However, 
further work would undoubtedly lead to better codes, as 
most of those given here can be augmented with addi- 
tional code words (N increased) without reducing the 
values of n or m. 

For given n and m, the “linear” augmentation process 
described in Section IV shows that the maximum size 
N,,,(n, m) of a ZFD code is strictly increasing with n, 
since 

N,,&, m) 2 N,,,(n - 1, ml + 1. 

Thus codes of any particular size or length can be formed 
from the next smaller member of one of the code families 
offered in this section. Similarly, such particular codes 
may be obtained by deletion of digits and/or code words 
from larger codes. I’urthermore, 

N,,,(n, m) 2 N,,,(n, m’) if m’ 2 m. 

The list of the n weight-one n-digit binary vectors 
( i.e., the code defined by A = I, the n-by-n identity 
matrix) provides a trivial example of a ZFD, code, 
having N = n = m, which cannot be augmented to 
form a larger code of the same length and order. These 
codes achieve the bound (l), and will be used later in 
this section as building blocks for the construction of 
larger codes by composition methods. 

One large class of known binary codes, the binary 
group codes [20], can be ruled out for direct use as super- 

m2 

The quantity d may now be identified as the (minimum) 
distance, which characterizes the error-correcting property 
of a group code (or of any binary error-correcting code, 
for that matter). Thus, the search for a ZFD, code of 
fixed weight w can be viewed as the search for a constant- 
weight conventional error-correcting code of distance 

d = 2w(m - 1) + 2 
m 

One simple way to generate constant-weight error- 
correcting codes is to extract all words of the desired 
weight w from an arbitrary error-correcting code. This 
selection will certainly not reduce the distance. In fact, 
if the distance of the original code is odd, the selection 
will increase it to the next even value, since two code 
words of the same weight can differ only in an even 
number of digits. For example, it is known that the number 
of weight-w words in the Hamming single-error-correct- 
ing (d = 3) code of length n = 2’ - 1, for any v = 
2, 3, 4, *-- , is equal to the coefficient of xw in the poly- 
nomial [al] 

P(2z) = & {(l + z)” + n(1 - z)(l - x’)~-~“} 

= l + n(n - 1) x3 + n(n - l)b - 3, 
6 24 

Tc4 + ... . 

Thus, all N = n(n - 1)/6 code words of weight w = 3 
can be used for a ZFD, code of length n. Since the dis- 
tance of the constant-weight portion of this code is now 
d = 4, the order of the code, from (lo), is at least nz = 2. 

Unfortunately, most group codes do not lead to interest- 
ing ZFD, codes, because of the property of group codes 
that the distance equals the weight of the minimum- 
weight nonzero code word; thus, d 5 w. If this weight 
is even, then (10) gives (for w > 1) 
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and if the weight is odd, 

m> 
I- w-l 1 1 w+1 = 2. 

W-- 
2 

While these are only lower bounds on m, they can be 
expected to be close to the actual order, unless the num- 
ber N of weight-w code words is very much less than the 
bound (3) would indicate may be possible. Therefore, 
constant-weight ZFD codes of large order must be gener- 
ated either from one of the few known nonsystematic 
codes, or from a method other than selection from classi- 
cal binary error-correcting codes. The ZFD codes con- 
structed below are derived from q-nary error-correcting 
codes and from the block designs of statistics. 

B. Codes Based on q-nary Codes 

A q-nary error-correcting code is a code whose code- 
word digits are members of a set of q basic symbols [20]. 
If q = 2, we have a binary code, and the symbols 0 and 1 
are generally used. However, our main interest in this 
section is with values of q greater than two. Many q- 
nary codes are known which have various lengths n, 
and various q-nary distances d, (minimum number of 
differing q-nary digits between any pair of code words) 
[201, P21. 

We intend to form a binary superimposed code from 
a q-nary code by replacing each q-nary symbol by a 
unique binary pattern. To simplify the discussion, assume 
initially that each of the q binary patterns has unit weight 
and length q. Thus, the q-nary symbols 0, 1, . . . q - 1 
are to be replaced by the q-digit binary vectors 100 . . . 0, 
010 * * * 0, *a * , 000 * * * 1, respectively. (The generaliza- 
tion to other binary patterns will be described in the 
next subsection.) A q-nary code of length n,, is therefore 
transformed into a binary code of length 

n = P, (11) 

and the binary distance is twice the q-nary distance: 
d = 2d,. The number N = N, of code words remains 
the same. Since the binary code has constant weight 
w = n, (one one per q-nary digit), its ZFD order is given 
by (lo), and is 

m2 [ 1 n- -1 
np -d, ’ 

In the interests of maximizing m for fixed length n, and 
size N,, we seek q-nary codes whose distance is as large 
as possible. A study of maximal-distance q-nary codes 
has revealed several code families, and some interesting 
special properties; when the code is separable-that is, 
when the number n, of digits can be separated into k, 
(independent) information digits and rp = n, - k, 
(dependent) check digits. These results have been .re- 
ported in a separate paper [22]. In particular, it has been 
shown that the distance is bounded according to 

so that q-nary-based codes with k, 2 5 are extremely 
large-certainly too large to be of much interest for the 
types of applications discussed in Section II. Even for 
k, = 4, reasonably sized codes exist only when the maxi- 
mum order m is small (2 or 3). For the other cases, we 
have 

k, = 2: 
n = q(1 + m) 

N = q2 

d, I r, + 1, arm 

so that for maximal-distance separable (MDS) q-nary 
codes, for which d, = ra + 1, the maximum order is 

-1 . m= zIsl. [ 1 (12) 

Equality in this expression follows directly from Theorem 
6, and the observation that each X,,, = (k, - 1)-tuple 
is repeated just q times. Also, the Ic, independent digits 
imply a total of 

(13) 

code words in the code. These three relations, (ll), (12),P, 
and (13), therefore relate the parameters q, k,, and n,’ 
of MDS q-nary codes to the parameters n, N, and m of 
the binary superimposed codes derivable from them. 

MDS q-nary codes are known to exist for several 
ranges of parameter values 1221, but the most useful * 
family for present purposes is the set for which q is any 
prime power (2 3), and which uses any values of k, and 
n, that satisfy 

q+l2.n,2.&+123. (14) 

In the conversion of these codes to ZFD codes, we may 
note from (12) that for prescribed m, and for any par- 
ticular values of q and k,, the use of a length np larger 
than 1 + m(lc, - 1) serves only to increase n while N 
and m remain constant. With this minimum value of n,, 
therefore, the parameters of the ZFD code family are 
(for k, 2 2): 

n = q(1 + m(k, - 1)) 
I 
I 

where q is any prime power, and q 2 m(k, - 1) 2 3. 
(The inequality (14) is now satisfied automatically.) 
We have therefore demonstrated the existence of ZFD 
codes of arbitrarily large size and order, and whose size 
N grows exponentially with length n, for fixed order m. 

This lower bound on q governs the minimum size of 
these ZFD codes; for example, for k, = 5, then q 2 4m, 
and 

n 1 4m(l + 4m) 

N 1 (4m)’ 

k, = 3: 
-ia = q(1 + 2m) 

N = q3 

q 2 2m. 
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When k, = 2, codes are known for which q is not re- 
stricted to be a prime power, but the range of nq is now 
reduced from that given by (14) to 

L(q) + 2 2 nQ 2 3 
. 

where L(q) is the number of pairwise orthogonal Latin 
squares of order q. Again, using the minimum value of 
n,, the same expressions for n and N result, but now the 
integer q must be chosen large enough so that 

L(q) 2 m - 1. 

It is known that L(q) is no greater than q - 1, and is 
at least as great as one less than the smallest prime-power 
factor contained in q [23]; e.g., L(12) = L(2’.3) > 2, 
and L(12) <_ 11. When q is itself a prime power, these 
limits are equal, and the bound stated earlier (q 2 m) 
results. 

When k, = 2 and m = 2, then n, = 3 and only one 
Latin square is needed; any value of q 2 3 is satisfactory 
as a basis for the resulting weight-three ZFD, code 
having n = 3q and N = q’. 

The construction of MDS q-nary codes is described 
in Singleton’s paper [22]. Suffice it to note at present that 
the family presented above includes as special cases the 
Reed-Solomon [24] q-nary codes (n, = q - l), q-nary 
“parity-check” codes (r, = l), simple repetition codes 
(k, = l), part of the family of Golay [25] single-error- 
correcting q-nary codes (r, = 2, nQ = q2 - l), and several 
codes based on orthogonal Latin squares (Ic, = 2) [26]. 

These q-nary-based ZFD codes are certainly inefficient 
in one respect, in that they are split-$eld codes; that is, 
each code word’s binary digit sequence, or jield, can be 
separated into distinct sections (the sections have the 
same lengths for all code words) which are encoded 
separately. Each of the w sections has length n, and 
contains a single one. In general, such a code may then 
be augmented with additional words, without decreasing 
its distance (hence its order), by letting the number of 
ones in each section increase above unity. For example, 
the ZFD, code based upon the ternary code with k, = 2, 
n, = 3, has the N = q2 = 9 code words 

001 001 001 
001 010 100 
001 100 010 
010 001 100 
010 010 010 
010 100 001 
100 001 010 
100 010 001 
100 100 100. 

Without increasing the length n = 3q = 9, or decreasing 
m, three more code words may be added: 

111 000 000 
000 111 000 
000 000 111 

yielding a ZFDz code of size N = 12. 

C. Codes Based on Composition with q-nary Codes 

It was assumed in the last Section V-B that each 
digit of the q-nary code was represented as a weight- 
one binary q-tuple. However, there is no reason why a 
more general representation of these q symbols cannot 
be used, provided only that any set of up to m different 
such symbol representations has a superposition sum 
which itself satisfies the ZFD, property. Thus, q words 
from any ZFD, code containing at least q words may be 
used. Since such a code may have a word length less 
than q (the length of the weight-one ZFD, code used 
previously), the total number n of binary digits necessary 
for the q-nary-derived superimposed code may be much 
less than qn,, the earlier value. 

This type of q-nary symbol representation may be 
advantageously regarded as a method of composition, 
in which a small ZFD code, having parameters n,, NO, 
and m,, say, may be converted into a larger ZFD code, 
having parameters n,, N,, and m,, on the basis of an 
n,-digit q-nary code having k, independent digits. The 
relations between these parameters are direct extensions 
of (ll), (12), and (13): 

n, = non, 

N, = qk’l 

m, = min (m,, m,), 

where q is a prime power now bound 
n, - 1 I q < N,, and 

by the inequality 

[ 1 n?I! -1 
m, = 12,-l . 

Using a value of n, no larger than necessary to render 
m, 2. m, = 112, = m, we get 

n - n, ( 1 + m(k, - 1)) 1- 

N, = qkq 
(16) 

where 

The choice of a weight-one code for the smaller ZFD 
code means that no = N, = m, = q, and yields the code 
family (15) derived in Section V-B. 

Starting with a simple weight-one code, repeated 
compositions can be carried out, keeping the order m 
fixed, to build up arbitrarily large ZFD codes.3 Different 
q-nary codes may be used at each stage of the composition. 
If the same type of q-nary code is used (except for the 
value of q itself, which is replaced by q’ = N,), then a 
second composition on the code (16) yields directly 

n - noI1 + m(k, - 2- 1))’ 

N, = qkaq 

8 Of course the original code for repeated composition need not 
be a weight-one code, or even a q-nary code, but can be any Zf'D 
code with the proper parameters. The block design codes of Section 
V-D can serve as particularly good original codes. 
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where 

m(lc, - 1) 5 q’ = N, = qku. 

(Clearly, if q is a prime power, then q’ = q is also a 
prime power.) After c such compositions on a weight- 
one original code, there results 

n, = qtl + m(k, - 1))” 

N, = qbC~ 
(17) 

where, as before, the prime power q must satisfy 
q > m(k, - 1). 

The block designs of statistics constitute a multi- 
parameter family of arrangements of objects, which for 
present purposes may be conveniently represented as 
matrices of zeros and ones. The incidence matrix S of a 
so-called balanced incomplete block design (BIBD) with 
parameters (v, k, b, T, X) has b rows, v columns, k ones 
per row, and r ones per column, and is such that the dot 
product of every pair of columns is just X. The well- 
known identities 

VT = bk 
The number c of compositions may be optimized with 

respect to q and k, by noting that replacement of c by 
c - 1 can be compensated for by replacing q by qkq, to 
keep NO constant. This substitution changes the length 
to ~“(1 + m(k, - l))“-I, which represents an increase 
(c too small) or decrease (c too large), depending on 
whether 

kg-1 

1 + &k, - lj 

is greater or less than unity, respectively. Thus, for 
given m and N, q should be selected in accordance with 
not only a lower bound, but now an upper limit as well: 

k(r - 1) = X(v - 1) 

must be satisfied. 
Either the rows or columns of S might be identified 

with the code words of a constant-weight code. If each 
column of S is a code word, then we have 

A = S” (= the transpose of S), 

so that 

n=b 

N=v 

1 + m(k, - 1) _< qkp-l < 1 + m(k, - 1)““. 

For k, = 2, this range becomes 

w=r 

xii = x = A,,,. 

1 + m I q I (1 + m)“, 

and for k, = 3, 

But v < b for a BIBD, and thus N 2 n, yielding an 
uninteresting family of superimposed codes. 

If each row of S is regarded as a code word, then 

(1 + 2m)1’2 5 q 5 (1 + 2m)3’2. A = S, 

(In this last case, the lower limit is satisfied automatically, 
since q 2 2m.) 

so that 

When k, = 2, this composition method is valid even 
when q is not a prime power, provided only that 
L(q) 2 m - 1, as before. The validity follows directly 
from the fact that 

W) 2 -w, 

an inequality which may be established without difficulty 
on the basis of the following construction.4 Let the set of 
L pairwise orthogonal Latin squares of order q be 
s,, *. * Sk . . . XL, written as matrices in the symbols 
0, 1,2, * * * q - 1, with general element sfr’ . . . . Then a set 
of L pairwise orthogonal Latin squares T,, . . . , T, . . . T, 
of order q2 and of general partitioned form 

n=v 

N=b 

w=k 

Xii I Pmsx 

where ccmax is the maximum dot product of any pair of 
rows of S. Hence 

m 2 [e] = [%I. 
Unfortunately, there is no simple relationship between 
x mlcx and II,,, for BIBD’s in general. If X = 1, then it 
may easily be shown that pClmax = 1, so that5 

where T$’ is a q-by-q array, can be constructed by letting 

Tj;’ = S, + qs$‘J, 

where J is a q-by-q array of all ones. 

4 This proof is due to B. Elspas. 

D. Codes Based on Block Designs 

m=w-l=lc-1, 

but if X > 1, then all that can be said in general is that 
25 l&ax L: k 

The theory of block designs is incomplete, although 
constructions are known for a number of families and 
for some isolated designs [27], [28]. Unfortunately, the 
parameter values of practical interest in forming super- 

6 Equality and maximality of this value of m  follow directly 
from Theorem 6. 
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imposed codes are beyond the range of most of the 
designs tabled for statistical use. The principal excep- 
tions to this situation occur for X = 1, for which useful 
designs are known with the parameters, 

(v, k, r, b, X) = ,N= 

specifically, for 
li = 3: v = 1 or 3 (mod S), b = r(2r f 1)/3, r = (v - 1)/2; 

so that w = 3, r~ = 1 or 3 (mod 6), 
N = n(n - 1)/6, m = 2 

lc = 4: v = 3r - 1, b = rv/4, r = prime power; so that 
w = 4, (n - I)/3 = prime power, N = 
n(n - 1)/12, m = 3. 

Note that these codes achieve the bound (5), and there- 
fore cannot be made larger for the same length and the 
same weight. (In fact, it can be shown that any ZFD, 
code ‘achieving this bound is equivalent to a BIBD.) 
The designs for the 1c = 3 family are called Steiner 
Triple Systems [27], and have had a previous applica- 
tion to coding problems [26]. 

VI. CONSTRUCTION OF UD CODES 

A. UD Codes Based on Parity-Check Matrices 

While UD codes can certainly be obtained by using 
ZFD codes of the same order (see Theorems 3 and 4), 
it may be possible to take advantage of the less stringent 
defining condition expressed in Theorem 4 to obtain UD 
codes which are larger than ZFD codes of the same order 
and length. Presented below are three different approaches 
to the construction of UD codes of small order. Some of 
these turn out to be quite efficient. 

The transpose H’ of the parity check matrix H of a 
conventional binary e-error-correcting code is known to 
have the property that the set composed of its row vectors 
and all sums of up to e of them contains no duplicates [29]. 
This property is exactly what is desired for the A matrix 
of a UD, code, except for the type of summation in- 
volved: the H’ matrix is based on modulo-2 (exclusive- 
OR) addition while the A-matrix is based on Boolean 
(inclusive-OR) addition. Consequently, Ht cannot be 
used directly as an A-matrix with m = e, but we might 
profitably seek some way to modify Ht so that uniqueness 
of these row sums is preserved, even under Boolean 
addition, 

We demonstrate below such modifications for e = 2 
and e = 3, yielding UD, and UD, code families, re- 
spectively. 

For e = 2, let each binary digit in H’ be accompanied 
in the same row by its complement; e.g., 

0 + 01 

1 4 10. 

This substitution can be effected by using, for example, 

the matrix 

A = [H” ! 8”], 

in which at is the binary complement of Ht. The addi- 
tion tables for elements of the Ht and A matrices may 
now be compared, 

@ 01 V 01 10 -____ 
0 0 1 01 01 11 
I 1 0 10 11 10 

Clearly, any pairwise row sum of A can be unambiguously 
transformed back to the corresponding row sum of H’: 

00 --+ 0 

10 -+ 0 

11 + 1. 

Similarly, any row of A can also be uniquely trans- 
formed to a row of Ht : 

01 -+ 0 

lo--+ 1. 

The dual interpretation of 10 will give rise to no 
ambiguities, as long as a row of A can be distinguished 
from a row sum. This is indeed the case, since no row of 
A contains 11, but every row sum contains 11 as evi- 
dence of differing digits in at least one digit position. 

Since uniqueness of rows and row sums is preserved, 
the matrix A represents a UD, code if the matrix Ht 
represents a 2-error-correcting code. The family of Bose- 
Chaudhuri codes [30] for e = 2 have at most 2~ check 
digits (number of columns of H”) and a total of 2” - 1 
digits (number of rows of Ht), for all positive integer 
values of p 2 2. Since A has twice as many columns as 
Ht, then 

N = 2” - 1. 

Therefore, for every doubly even value of n, a UD, code 
exists of size 

The exponential growth of these codes guarantees that 
they will be larger than all previously derived ZFD, 
(hence UD,) codes, for sufficiently large values of n. 

For e = 3, intercolumn relationships of H” must be 
somehow represented in A, since any form of simple 
substitution such as 0 --+ (Y, 1 -+ p is not adequate to 
maintain a distinction between all of the double and 
triple sums: 

O@O@l=l\ 

O@l@l=Ol 
but avavP=avPvP; 

l@l=O but PVP=PVPVP. 
l@l@l=l 
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It is possible to show that if every pair of columns of H t 
is recoded in A according to the transformation 

00 -+ 1000 

01 -+ 0100 

10 -+ 0010 

11 -+ 0001, 

then the resulting A-matrix represents a UD, code if 
the H t-matrix represents a triple-error-correcting code. 
The Bose-Chaudhuri codes [30] for e = 3 have a matrix 
H” with 2” - 1 rows and no more than 3~ columns, 
for every positive integral value of P 2 3. Since a pair 

of columns may be selected from H’ in ways, the 

number of columns of A is 

nl4 = 6~(3~ - 1) 

and the number of rows is 

N = 2’ - 1. Asymptotically, 

This code is inefficient for relatively small values of n 
and N, since N > n only for P 2 13 (n 2 2964), but it 
is asymptotically attractive: 

N > ‘fn/18. 
Consider next the case when the two ones are not 

restricted to separate portions of the code word. Let 
each of the n digit positions of the code words now be 
represented as a node of an n-node graph. Each code 
word may then correspond to an undirected branch be- 
tween the two nodes which represent the positions of its 
two ones. In these terms, we wish to place on an n-node 
graph a maximum number N of branches, subject only 
to a certain condition which corresponds to the desired 
UD, property: no branch-pair may be incident on the 
same set of nodes as another branch-pair. Thus, neither 
of the partial graphs in Fig. 1 is allowed. Cycles of lengths 

This growth rate is about the same as occurred for the 
q-nary ZFD, codes obtained by iterated composition 
with k, = 2 and q = 1 + m = 4: 

jlJ = zv”. 

B. Codes of Weight Two Based on a Graphical Construction 

The best codes of constant weight w = 2 can not be 
ZFD, codes, according to Theorem 6, but may be UD, 
codes. We derive below two such code families, and 
show that their size N grows asymptotically as n3”. 

Consider first the split-field case, when each of the ones 
is confined to a separate portion of the n-digit code word. 
Let a given code word have its two ones in the ith digit 
position of the left portion and the jth digit position of 
the right portion. The entire code may then be expressed 
compactly in the form of a binary matrix G, whose 
general entry gij has the value 1 when and only when 
the code contains such a code word having ones in the 
ith and jth digit positions of the left and right portions, 
respectively. Clearly, the size N of the code equals the 
total number of ones in G. 

To satisfy the UD, condition, no two ones in G must 
occupy the same pair of rows and columns as two other 
ones; that is, no row of G can contain a pair of ones in 
the same two positions as another row. Thus, we seek 
for G a binary matrix with a fixed semiperimeter n, 
and containing a maximum number N of ones, such that 
the dot product of any two rows does not exceed unity. 

This requirement will be met by the matrix of a BIBD 
[27] whose parameters (v, k, b, r, X) are given by: 
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n=v+b 

N = kr 

October 

x = 1. 

To the extent that these designs exist, N will be maximized 
for fixed n when the ratio v,/b = 7c/r is as near unity as 
possible. In the case of complete regularity, therefore, 
G must be the matrix of a symmetrical BIBD: v = b 
and k = r, thus n = 2v and N = i?. These symmetrical 
designs are known to exist for all values of k for which 
k - 1 is a prime power [27], and from the block design 
identities they yield the relations: 

n = 2(k” -k+l) 

N = k(k2 - k + 1). 

For these values of k, then, there exist split-field UD, 
codes of weight two and of size 

N=;(l+ v’%-?). 

3/2 

N-k. 
242 

u 
(a) 

Fig. 1. 
(b) 

4 and 3 can therefore be excluded, and 2-cycles (duplicate * 
code words) and l-cycles (weight-one code words) can 
be ruled out as needlessly wasteful. Therefore, we seek 
maximal n-node graphs which contain no closed cycles 
of length shorter than 5. Sufficiency of this condition is 
obvious: every n-node graph whose shortest cycle length 
is at least 5 generates a UD, code of weight 2. , 

Completely regular graphs of this type have been 
studied previously by A. J. Hoffman and R. R. Single- 
ton [31], and are called “Moore graphs of diameter Z”.’ 

6 The pertinence of the Hoffman-Singleton paper to the present 
problem was suggested by E. F. Moore. 
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In terms of the degree t of the graph-that is, the number 
of branches incident on each node-certain equalities 
must be satisfied which rule out all but four possibilities: 

t=2 n=5 N=5 

t=3 n = 10 N = 15 

t=7 n = 50 N = 175 

t = 57 n = 3250 N = 92,625. 

The first two graphs are shown in Fig. 2, the third is 

(b) 
Fig. 2. 

listed in Hoffman’s paper, and the fourth case is un- 
decided. The code parameters are related to the degree by: 

n=1+t2 

so that 

N=n2/n-1 
2 ’ 

For values of n intermediate between those listed above, 
the next larger complete graph may be pruned, one node 
with its incident branches at a time, to remove the least 
number of branches at each step. The sizes of some of 
these intermediate codes are listed in Table I. In any 
case. we have the approximate asymptotic growth, 

3/z 

N n2 
N- 

which is slightly better than for the corresponding split- 
field UD, codes, but is still poorer than the growth for 
the UD, codes which are based on parity-check matrices 
of conventional double-error-correcting codes, and which 
are presented in the previous subsection. The codes of 
Table I are also much poorer than the simplest q-nary 
and block-design-based ZFD, codes of Section V. 

TABLE I 

n N n N 

5 5 30 70 
10 15 35 95 

8: 25 40 45 120 145 
25 zi 50 175 

C. Pairwise Composition of UD, Codes 

It was shown in Section V how a three-section, split- 
field, ZFD, code can be formed from a known ZFD, 
code of one-third the length. The code words of the three- 
section code have the form 

etc., 

in which the partial words a,, a,, . . . and b,, b,, + - ’ are 
selected independently as code words of the smaller 
code. The third partial words, cll, czzr . . . are selected 
from the same code in accordance with a certain Latin 
square, whose row and column indices are related to the 
first and second partial words. Thus, from a given ZFD, 
n-digit code having N words we may compose a new ZFD, 
code having 3n digits and N” words. 

We will now show that large UD, codes may be similarly 
composed from smaller UD, codes, the only difference 
being that the length of the third field is considerably 
less than that required in the ZFD, case. Equivalently, 
UD, codes can be formed whose size N is much greater 
then ZFD, codes of the same length. 

If the partial words a,, az, . . . and b,, bz, . . . are 
selected from a UD, code, then the first and second fields 
of the superposition sum, 

(a, V a,)(b, V b,)(c,, V c22) 

can certainly be individually deciphered into their con- 
stituents. Without a suitable third field, however, the 
two interpretations 

(azP-d(czz) (db&G 

cannot be distinguished. We therefore require that 

This condition can be expressed more naturally by 
arranging the entire set of third-section partial words 
cii into a N-by-N matrix C, just as was done for the 
Latin square. The row and column indices correspond 
to the selection of the partial words ai and bj, respectively. 
Thus, each element in the matrix C is the third section of 
one of the N2 code words being derived. The above 
condition now reads 

Cij v Ckl f Gil v C&j, i#lc, j#l 

for every set of four elements which form a rectangle 
in the matrix. That is to say, opposite diagonal sums 
must be different for each 2 X 2 minor of C. 

If cii is limited to a single binary digit, the largest 
C-matrix meeting this condition is readily seen to be a 
3 X 3 identity matrix: 



376 IEEE TRANSACTIONS ON INFORMATION THEORY October 

100 

i I 

First of all, note that the X, Y, and 2 portions of the 

cl= 010. 
binary vector entries cii in each of the ninths of C,,, 
are the same within each ninth. Hence, any 2 X 2 minor 

001 falling entirely within one of the ninths will certainly 

Starting with a 3-digit, weight-one code (which is certainly 
satisfy the condition. In fact, any 2 X 2 minor whose 

UD,), having the three code words 
corners fall in different ninths will also satisfy the condition 
for the same reason, except perhaps if its horizontal 

001 
010 
1 0 0, 

the matrix C1 yields a 7-digit UD, code having 32 = 9 
words 

001 001 1 
001 010 0 
001 100 0 
010 001 0 
010 010 1 
010 100 0 
100 001 0 
100 010 0 
100 100 1. 

We seek next a 9 by 9 matrix C, whose entries cii 
satisfy the above minor diagonal condition. In general, 
we need to convert a 3”-by-3” matrix C, into a 3P+1-by-3”” 
matrix C,,,,, p = 1, 2, . . . , in such a way that C,,, 
satisfies the minor condition if C, does. To this end, 
suppose that such a C, satisfies this condition and has a 
partition into ninths of the form 

TX y 21 

or vertical corner pairs fall in corresponding rows or 
columns of different ninths. In these cases, however, 
the added digits serve to keep the condition satisfied, 
by providing a digit pattern over these corresponding 
positions exactly as was used in C1. The first added 
digit handles the case when the four corners of the minor 
fall at corresponding locations in four different ninths. 
The second added digit handles the case when the minor 
lies entirely within a line of three adjacent ninths, but 
its left and right corner-pairs (or top and bottom corner- 
pairs) fall in corresponding columns (rows, respectively) 
of these three ninths. 

As a result, all minors satisfy the diagonal condition, 
and C,+, is a satisfactory matrix for a UD, code. 

With each increase of p by one, two binary digits 
are added to cii; thus, the entries in C, are 2p - 1 binary 
digits in length. The UD, code obtained by iterated 
composition therefore has, for each positive integral 
value of p, a size N and a length n(p) given by 

N = 3’“, n(p) = 2n(p - 1) + (2p - l), 

or 

n(p) = 6.2” - (2p + 3). 

Asymptotically, then, 

n/6 
where X, Y, and Z are 3”-I-by-3”-’ submatrices with 

N-3 . 

vector elements. C, certainly has this partition structure. 
Let the notation 1X designate a matrix X, ah of whose 

The ZFD, codes obtained by iterated composition also 

vector entries are augmented (on the left end, Say) with 
had N = 32~, but for them, n(p) = 3n(p - l), 

a binary 1; similarly for OX lY, OY, lZ, and OZ. We 
so n(p) = 3~+~. Yor these vaiues of p, then, 

will now show that the matrix 

C 9+1 = 

‘11x 1OY 1oz /00x OlY ooz j 00x OOY OlZ’ 

1oz 11x 1OY joozooxo1Y j olzooxooY 

1OY 1oz 11x IOlY oozoox I OOY 01z00x 
__---_____I_______---~---------- 

ooxooYolz /llxloY1ozj ooxolYooz 

olzooxooY j1oz1lx1oY j oozooxolY 

OOY 01z00x IlOY 1oz 11x I OlY oozoox ---------- I__--- ____ - I_______ --- 
ooxo1Yooz IooxooYolz/ 11XlOY 1oz 

I 
oozooxolY jo1zooxooY / 1OZllX 1OY 

.OlY oozoox lOOY 01z00x I 1OY 1oz 11x- 

l/zh)~o~*z N=3 , 

which is much less than the corresponding value of N 
for the UD, codes. 

VII. DISCUSSION 

We have shown in Sections I-VI how a new class of 
codes, nonrandom binary superimposed codes, may be 
used in storage and communication systems, and we have 
derived for these codes several properties and construc- 
tion methods over a wide range of parameter values. 
Not considered in this first investigation of ZFD and UD 
codes are problems associated with their implementation 
in encoding and decoding logical circuitry, and the 
formation of truly optimal codes. Also, it would some- 

which has the same partition structure as does C,, also times be useful to be able to use part of the distance of 
satisfies the minor diagonal condition. the codes for noise protection, even if the order of the 
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code must be reduced to do so, and to determine the 
trade-off between the degree of error-detection and the 
order. 

In the theoretical area, better upper bounds on N as a 
function of n and m would be desirable, as would a better 
undertanding of the inner relationship between ZFD and 
UD codes. 

Comparison of known ZFD codes with one another 
reveals that the largest short codes are based on block 
designs, and the largest longer codes are based on g-nary 
error-correcting codes. Since the block-design codes all 
have fixed weight, these results suggest that block-design 
codes of large weight, if they exist and could be found, 
would turn out to be superior. Indeed, the fact that q- 
nary-based superimposed codes are split-field codes, and 
can be augmented in almost every case, indicates an 
avoidable inefficiency that could be overcome with a 
more uniform distribution of ones throughout the code 
word, such as occurs in block-design codes. 

A comparison of ZFD and UD codes with random 
superimposed codes suffers from the same difficulties 
that are encountered in comparing deterministic and 
random conventional error-correcting codes. Some sort of 
channel statistics (here, descriptor usage statistics) must 
be assumed, in order that a set of quantitatively related 
error (false-drop) probabilities may be assigned to the 
occurrence of the various numbers of different types of 
errors (here, the numbers of quiz and document de- 
scriptors). From the point of view of actually carrying out 
the comparison analytically or computationally, the 
situation is further complicated in the case of super- 
imposed codes by the unavoidable dependence of the 
result on additional parameters: the size of the file, and 
the ratio between the numbers of quiz and document 
descriptors. Also, in the retrieval application, the mean- 
ingfulness of the result is liable to depend rather critically 
on some assumptions which are not at all met in practice 
(equal descriptor usage, and lack of interdescriptor cor- 
relation). 
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