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Superimposed Codes for the 
Multiaccess Binary Adder Channel 

P. Z. Fan, M. Darnell, Member, IEEE, and B. Honary, Member, IEEE 

AbsiractSuperimposed codes for multiple-access communication in a 
binary adder channel are analyzed. The superposition mechanism used 
in this correspondence is ordinary addition. Each user is assigned a 
codeword frow a Superimposed code. It i s  proved that every constant- 
weight code C of weight w and maximal correlation c corresponds to 
a subclass of a disjunctive code D of order m < w/c. Therefore, any 
m or less codewords in C which are used at the same time yield a 
uniquely decodable code combination at the output of the adder channel. 
In the noisy case, for each subset A C of size IAl 5 m << T 
the receiver is able to determine the number of active users and to 
distinguish between the active users if the weight of the error pattern 
e satisfies Wt(e)  < min{w - cJAJ, w/2}. Decoding algorithms for both 
the noiseless and the noisy cases are proposed. 

Zndex Terms- Superimposed codes, constant-weight codes, error- 
correcting codes, binary adder channel, multiaccess communication, 
information theory. 

I. INTRODUCTION 
The idea of superimposed codes was introduced in 1964 by Kautz 

and Singleton [l]. The application they had in mind was information 
retrieval and the superposition mechanism assumed was a Boolean 
sum. The concept is, however, also useful in communications over 
the multiple-access OR channel. Many generalizations and results 
concerning the multiple-access OR channel have been obtained 
[2]-[4]. Chien and Frazer introduced the concept of superimposed 
codes by using modulo-2 addition as the superposition mechanism 
[5]; this was also recently reconsidered by Ericson and Levenshtein 
[6]. Ericson and Gyorfi studied the same problem in Euclidean 
n-space R” in which the inputs and the output of the channel 
are all real-valued vectors [7]. In this correspondence we will 
further investigate superimposed codes. The superposition mechanism 
used here is ordinary addition. The application background of this 
superposition mechanism is also multiaccess communications, but 
the channel model used is a T-user binary adder channel (T-BAC) 
instead of the binary OR channel. 

The multiaccess T-BAC, as shown in Fig. 1, is a multiple binary 
input single summed output channel [8]. By the summed output is 
meant the set of output codewords which results from the compo- 
nentwise sum of codewords from a given code. The superimposed 
codes are binary codes and are characterized by three parameters: the 
block length n, the order m, and the size T. Identifying m out of T 
( m  << T) users sharing a multiaccess adder channel can be achieved 
as follows: assign to each user one codeword from a superimposed 
code and the all-zero vector of length n. Those users who wish to 
identify themselves (active users) send their respective codewords 
from the superimposed code. All others send the zero vector. It is 
assumed that both block and bit synchronization are maintained. The 
code guarantees unique identification of all active users as long as the 
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Fig. 1. Multiaccess binary adder channel. 

number of active users does not exceed m.  The decoder receives a 
sum vector, which is the superposition of the transmitted codewords, 
and it attempts to partition it into its component codewords. 

In the following sections we will first present some basic concepts 
concerning the superposition mechanism and superimposed codes. 
Then the relationship between the constant-weight codes and dis- 
junctive codes is analyzed and some important results concerning 
the decomposition of the disjunctive codes in the noiseless and 
noisy cases are derived. In order to demonstrate the operation of 
T-BAC system, a class of good constant-weight codes (KS codes) is 
discussed. Finally, several decoding algorithms for the noiseless and 
noisy channels are developed and the decoding complexity is briefly 
analyzed. 

II. BASIC CONCEPTS 
Before proceeding the following definitions are required 
Dejnfion 1: The correlation between two binary {0,1} vectors zl 

and x k  of length n is the number of positions in which both vectors 
are 1 (i.e., the number of overlaps between the two vectors) 

n 

c(Zl, x b )  = Czlj ' z k j  (1)  
,=O 

where the z~,, zb, are the j t h  binary symbols of zl and x k ,  respec- 
tively. 

Given a binary code C,  the maximum correlation c is defined as 

Dejntion 2: Consider a set A = {XI, z2, . . . , zm} consisting of 
m binary vectors of length n. The superposition of these vectors is 
an m-ary vector z = f ( A )  = (t~,z~,...,z,,) of length n, where 

m 

z3 = Czt3 j = 1 , 2 , . . . , n  . (3) 
Z = 1  

This superposition concept corresponds to a binary adder channel 
that operates on a set A of binary input vectors and produces an 
output m-ary vector z equal to the ordinary sum of the input set. 

Dejintion 3: The weight of an m-ary vector t = f ( A )  = 
(zI,zz,...,z~) is defined as 

n 

Wt(f(A)) = 1 %  I. 
3=1 

Let z, = { G I ,  z,~, . . . , zZn} be a binary vector. The weight of the 
difference vector f ( A )  - zt is defined as 

where "-" denotes ordinary subtraction. 

Dejnition 4: A binary vector zz = (GI,  ~ 2 , .  . . , zzn) is said to 
be included in an m-ary vector z = ( z l , z z , .  . , zn) if and only if 
z3 - x , ~  2 0 , j  = 1 , 2 , . . . , n  . 

Definition 5: The binary code C with codeword length n and 
size T is a disjunctive code of order m if each subset A C of 
size [AI 5 m has the property that z = f (A)  includes only those 
codewords in C which are also in A. The set of all disjunctive codes 
with parameters n, m ,  and T is denoted by D(n ,  m,  T) .  

The class of disjunctive codes is a subset of the class of super- 
imposed codes. 

III. CONSTANT-WEIGHT CODES AND DISJUNCTIVE CODES 
Dejinifion 6: A constant-weight (CW) code is a binary code in 

which all codewords have the same weight. For a CW code with 
weight w, the correlation is related to the Hamming distance d~ by 

If we denote the minimum distance and maximum correlation by 
d H  and c, respectively, then 

The set of all CW codes with length n, weight w, maximum 

Theorem 1: A binary CW code C with parameters (n, w, c, T )  is 
correlation c, and size T is denoted by CW(n, w, c, T).  

also a disjunctive code D ( n ,  m,  T), where m satisfying 

W 

C 
m <  -. (7) 

Pro08 Let A C C, A = {x1,x2,...,xm}, and zc E C be 
an arbitrary codeword not in A. Suppose f (A)  includes z,, then 
z, - x,, 2 0, j = 1 , 2 , .  . . , n. Because the code C has a maximum 
correlation c for all pairs of codewords, which means that each of 
the codewords zz E A will overlap with xc at most c times, then 
there are at most cm positions in zc which will overlap with all 
2 1 ,  LZ,. . . , zm. But from the conditions that the weight of zc is a 
constant w and cm < w (or m < w/c), it is obvious that there 
exist at least w - cm positions that do not overlap with any of the 
codewords z I  E A. In other words, there exist some positions j such 
that z, - x,, < 0, which implies zc cannot be included in z = f ( A )  
if m < w/c. From definition (5) we can thus conclude that a binary 
CW code C with parameters (n, w, c, T) is also a disjunctive code 

In practice, the order m of a disjunctive code D ( n ,  m ,  T) should 
D ( n ,  m,  TI. 

be an integer. In order to use Theorem 1, we can set 

where rx1 denotes the lowest integer greater than or equal to I. 
This relation is useful because it transforms the problem of designing 
disjunctive codes into the problem of designing constant-weight codes 
which have been extensively studied in the past [9] ,  [lo]. It should 
be pointed out that the constant-weight codes correspond to only a 
subset of disjunctive codes. There may be good disjunctive codes that 

Theorem 2: If the binary code C is a disjunctive code D(n ,  m ,  T )  
constructed from CW(n, w ,  c, T), then for each subset A 2 C of 
size IAl 5 m ,  the equation W t ( f ( A )  - x2) = (IAI - 1)w holds 
when z2 E A. But for all other codewords x, E C \ A, we have 

are not constant weight codes. 

Wt (z  - 2,) > (IAI - 1 ) ~ .  
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Proof: If the binary code C is a constant weight code 
C, it is simple to show that the CW(n, w, c, T) then for A 

weight of z = f ( A )  is equal to 
n 

Wt ( z )  = 1 1zS3 I = IAIw. (9) 
{al=,€A} 3=1  

Because Wt (z t )  = w, if z, E A (f(A) includes z,) then 
n 

Wt(f(A) - 2,) = Iz3 - zz31 = lAlw - w = (IAI - 1)w 
3=1  

(10) 

which proves the first part of the theorem. 
If x, E C \ A  then f (A)  does not include 2,. It has been shown in 

the proof of Theorem 1 that there exist at least w - cm positions that 
do not overlap with any of the codewords x2 E A, i.e., z3 - zc3 < 0 
for some j .  Let S denote the set of positions of nonzero elements in 
zc which overlap with other 2, E A and S denote the set of positions 
of nonzero elements zc3 which do,not overlap with any of zI E A. 
Because (w - cm) > 0 and (AI 5 m, we have 

which concludes the proof of the theorem. 
Theorem 3: Let C be a binary disjunctive code D(n ,  m ,  T) con- 

structed from CW (n, w, c,  T), then for each subset A & C of size 
IAl 5 m the receiver is able to distinguish how many codewords 
have been transmitted if the weight of the error pattern e = 
(e l ,  e*, . . e ,  en)  satisfies 

Proofi From Theorem 1, if IAl = m' 5 m,  Wt(f(A))  = m'w; 
if IAl = m' + 1 5 m, then Wt (!(A)) = (m' + 1)w. Let 

S = Wt (f^(A)) = Wt (f(A) + e) 

then 

Wt ( f (A) )  - Wt (e) I S I Wt (!(A)) + Wt (e) (12) 

or 

lA(w - Wt(e) 5 S 5 lAlw + Wt(e). (13) 

Now if Wt (e) < w/2, the number of codewords transmitted can be 
obtained by 

1 3  (S - 1 3 4  < : 
(14) { L$J + 1 (S - L$Jw) 2 5 

1-41 = 

where 1x1 denotes the highest integer less than or equal to z. 
Theorem 4: Let C be a binary disjunctive code D(n ,  m ,  T) con- 

structed from CW (n, UJ, c, T), then for each subset A & C of 
size [AI 5 m the receiver is able to correct any error pattern 
e = (e l ,  e2,. . . , e n )  whose weight satisfies 

Proof: Suppose the received vector is f^(A) = f ( A )  + e. For each 
subset A C of size (AI 5 m,  if the channel is noiseless, then 

Wt(f^(A) - 2,) = (IAI - l )w ,  z, E A. 

If the channel is noisy and the weight of the error pattern satisfies 
Wt(e) < w - clAl, let zz E A, then 

Wt (f^(A) - 5 , )  = Wt (f(A) + e - z l )  

= 1z3 + e3 - xz3 I 
J E S  

+ 123 + e3 - 5231  

I (IAlw - w) + Wt (e) 
3 E 3  

< (IAI - 1 ) ~  + (W - CIA[). (15) 

But for all other codewords zc E C \ A and Wt(e) < w - CIA/, 
we have 

Wt(f^(A)-z , )  = W t ( f ( A ) + e - z , )  
= 1z3 + e3 - zc31 

3 € S  

+ 123 -t e3 - 3% I 
3 E S  

2 (IAlw - CIA[) + (w - clAI) - Wt (e) 
= (IAI - 1)w + 2(w - clAI) - Wt (e) 

> ([AI - 1 ) ~  + (W - c~AI).  (16) 

Therefore, the correct codewords zz E C can be distinguished from 
the codewords zc E C \ A .  

It should be noted that the error-correcting ability of the disjunctive 
code constructed from the constant-weight code is not constant, 
but is a function of size IAl. It can be seen from the condition, 
Wt (e) < w - clAl, that the maximum and minimum error weights 
that can be corrected are, respectively, Wt,,, (e) = w - c = d ~ / 2  
(when IAl = 1) and Wt,,, (e) = w - clm((when IAl = m), where 
dH = 2w - 2c is the minimum Hamming distance of the constant- 
weight code. It is clear that in order to use Theorem 4, the size of 
A should be known in advance. Although the IAl can be obtained 
from (14), Theorem 3 can only guarantee the correctness of the [AI 
computed by (14) if 

n 

Wt(e)  = le3\ < w/2. 
3=1 

This analysis directly leads to Theorem 5 below: 
Theorem 5: Let C be a binary disjunctive code D(n ,  m, T) con- 

structed from CW (n, w, c, T), then for each subset A & C of size 
IAl 5 m the receiver is able to distinguish how many codewords 
have been transmitted and, at the same time, recover every codeword 
if the weight of the error pattern e satisfies 

IV. CONCATENATED KS CODE 
An effective method for constructing good constant-weight codes 

(and thereby disjunctive codes) is to use a concatenated code in which 
the inner code is a constant-weight code. The KS code, which was 
first found by Kautz and Singleton [l], is based on a maximum- 
distance-separable (MDS) outer code (e.g., Reed-Solomon code) and 
an orthogonal weight-one inner code CW ( q , l ,  0, q) .  Let C be an 
RS code over GF(q) with length w and minimum distance d. The 
dimension will be k = w - d + 1. We now produce the inner 
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CW(q, 1 ,0 ,  q )  code by mapping each symbol in GF (q) to a binary 
vector of length q and weight one 

0 - 1 0 0 0 ~ ~ ~ 0  
1 ---+ 0 1 0 0 ~ ~ ~ 0  

. . .  
( q - 1 )  - 0 0 0 0 ~ ~ ~ 1 .  

We, therefore, obtain a constant-weight code CW(qw, w ,  c, q'+') 
which corresponds to a disjunctive code D(wq,  [w/c1 - 1, q"+'). 
. Example: Let C be an RS(n, k,d) = RS(6,2,5)  code with 

generator matrix 

1 0 6 5 4 3  
G =  [o 1 2 3 4 51. 

With this RS code, a disjunctive code with parameters 

D ( 6  x 7, [A] - 1,7"-5+1) = D(42,5,49)  (19) 

and Hamming distance d H  = 10 can be constructed. 
Any RS codeword x, = ( x , ~ , x 2 ~ , ~ ~ ~ , x 2 ~ ) ,  x z 3  E GF(7) can 

be calculated by multiplying the generator matrix by an information 
vector m = (ml ,mz) ,  mJ E GF(7).  For example, if m E 
{(1,2), (2,2), (3,2), (6,6)), then the codeword set A, IAl I: 5, and 
the superposition of A will be as follows: 

A = {mG I m E {(1,2), (2 ,2) ,  (3,219 (6,6)1} 
= {(123456),(222222), (321065), (666666)) =I 001000 , 

000000 
100000 
010000 

000100 
000010 
000001 1 ;:E;:], I":" 010000 

000000 100000 
000000 000000 
000000 000001 
000000 000010 

, 

0 0 0 1 0 0  
1 0 1 0 0 0  
1 3 1 1 1 1  

0 0 0 1 0 0  
0 0 0 0 1 1  
1 1 1 1 2 2  

~000000 
000000 
000000 
000000 
000000 
000000 
J11111 

V. DECODING ALGORITHMS FOR THE NOISELESS T-BAC 
The objective of the decoder for a superimposed code is to 

reproduce the transmitted codewords of the active users using the 
received vector. For the noiseless T-BAC, the task is just to map 
from the received superimposed m-ary vector f ( A )  formed by the 
channel into a set of codewords A from the given superimposed 
code C. That is 

f ( A )  - A. (22) 

Decoding Algorithm 1: According to Theorem 2, if the binary 
code C is a binary disjunctive code D ( n ,  m ,  T )  constructed from 
CW(n,w,c,T) ,  then for each subset A & C of size IAl 5 m,  
Wt(f(A) - r,) = (IAI - 1)w if and only if 2% E A. Therefore, 
an obvious way of decoding is an exhaustive search, i.e., for all 
codewords in z2 E C, compute the Wt (f(A) - xz), and then output 
all the codewords which satisfy Wt (f(A) -xt) = ([AI - 1)w. That is 

A = {x2 E C I Wt ( f (A)  - 2,) = (IAI - 1)w) (23) 

1181 

Decoding Algorithm 2: The exhaustive search decoder has a de- 
coding complexity independent of the transmitted set of codewords 
and equal to T .  If we make use of the structure of the specific 
disjunctive code, the number of codewords x, used in the test 
Wt ( f (A)-2,)  = (JAI-1)w can be reduced greatly and the decoding 
complexity thus reduced. In the case of a KS code, it is simple to 
find the transmitted elements (symbols) from GF ( q )  in the received 
vector. In the above example, from the first and second columns of 
the received superposition vector z = f (A) ,  it is evident that the 
first and second positions of the transmitted RS codewords must be 
in the set {1,2,3,6} and {2,6}, respectively. This means that the 
possible information vectors m = (ml , mz) of the corresponding 
codewords are 

Obviously, if we use the corresponding codeword set C as a 
candidate set in the decoding process, i.e. 

the results will be the same as with Algorithm 1. However, because 
IC1 << IC[, the decoding complexity has &en reduced greatly. For 
the example given above, IC( = 49, but IC( = 8. 

Based on the fact that the size of IAl is constant for a given 
received vector f (A)  and can be calculated beforehand, the decoding 
complexity can be further reduced by counting the number of decoded 
codewords. If the number of decoded codewords equals IAl, then 
there is no need to try the rest of the candidate codewords. 

Therefore, the simplified algorithm can be summarized as follows: 
1) Compute the size of [AI using (14). 
2) Generate a relatively small candidate codeword set C by 

3) Select a candidate codeword x, E C and test whether it satisfies 

Wt(f(A) - xZ) = (IAI - 1 ) ~ .  (26) 

If it does, increase the decoded codeword counter by one. 
4) If the counter value is equal to IAl, then exit; otherwise go to 

making use of the specific code structure. 

the following condition: 

Step 3. 

VI. DECODING ALGORITHMS FOR THE NOISY CASE 

As is shown in Fig. 1, the received vector in the noisy case is 
given by f (A)  = f (A)  + e. Based on Theorem 5, if C is a binary 
disjunctive code D ( n ,  m,  T )  constructed from CW(n, w,  c, T )  and 
the weight of the error pattern e satisfies 

w 
Wt(e) = xle,I < min{w - CIA[-}, IAl 5 m 2 

J=1 

then the codewords transmitted can be correctly recovered. Therefore, 
we have the following decoding algorithm: 

Decoding Algorithm 3: 

A = {rz E C IWt(f(A) - 2,) < 

(IAI - 1)w + min { w - clAl, :}}. (27) 

In order to reduce the decoding complexity, the same idea can be 
employed as in Algorithm 2, That is, to produce a relatively small 
set of candidate codewords C by making use of the structure of the 
specific disjunctive code and the known information [Al. For the KS 
code, however, the size of the candidate set C and the process of 
producing candidate codewords will be slightly different; this is not 
addressed here, for simplicity. After generating the candidate set C, 

where J A J  is obtained by (14). the decoding process is similar, i.e.: 
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Decoding Algorithm 4: [9] M. R. Best, A. E. Brouwer, F. J. MacWilliams, A. M. Odlyzko, and 
N. J. Sloane, “Bounds for binary codes of length less than 25,” IEEE 
Trans. Inform. Theory, vol. IT-12, no. 2, pp. 92-96, 1966. 

[lo] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting 
A = {G E C IWt(f^(A) - 2,) < 

w - ~1.41, E}} (28) Codes. New York North-Holland, 1977. 
2 

where the decoding process should be stopped if the decoded code- 
word counter is equal to 1.41. 

Finally, it should be stressed that the error pattem e is not 
necessarily an integer vector; it can also be any real value vector if 

W 
Wt ( e )  < min w - C I A ~ ,  -}. { 2 

In other words, the proposed Algorithms 3 and 4 are also soft-decision 
decoding algorithms which will give better error performance than 
with hard-decision decoding. 

VII. SUMMARY 
In this paper, we have investigated superimposed codes for the T -  

BAC. The superposition mechanism used here is ordinary addition. 
The T-BAC system consists of a set of T users sharing a multiaccess 
binary adder channel. It has been proved that if the number IAJ of 
active users satisfies the condition IAl 5 m << T ,  we can decompose 
the received word into its component codewords over a noiseless T -  
BAC. In the noisy case, the number of active users and the codewords 
can also be correctly recovered provided that the weight of the error 
pattem satisfies 

In this paper, each user is given only one codeword, which can 
only be used to identify the active users. However, if each user 
is distributed a set of codewords, information can be carried and 
transmitted. 
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New Optimal Ternary Linear Codes 

T. Aaron Gulliver, Member, IEEE 

Abstract-The class of quasi-twisted (QT) codes is a generalization 
of the class of quasi-cyclic codes, similar to the way constacyclic codes 
are a generalization of cyclic codes. In this paper, rate l /p  QT codes 
over GF(3) are presented which have been constructed using integer 
linear programming and heuristic Combinatorial optimization. Many of 
these attain the maximum possible minimum distance for any linear 
code with the given parameters, and several improve the maximum 
known minimum distances. Two of these new codes, namely (90,6,57) 
and (120,6,78), are optimal and so prove that d3(90,6) = 57 and 

Index Terms-Quasi-twisted codes, heuristic search, optimal codes over 

d3(120,6) = 78. 

GF(3). 

I. INTRODUCTION 
One of the most fundamental and challenging problems in coding 

theory is to construct a linear (n, k) code over GF(q) achieving the 
maximum possible (or known) minimum Hamming distance, d .  This 
value is denoted as d, (n ,  k), and linear codes which achieve it are 
optimal. The Gilbert-Varshamov bound [l] gives a lower bound on 
d, (n ,  k), but few classes of codes are known which attain this bound. 
One exception is the class of rate l / p  quasi-twisted (QT) codes, 
which has been shown to meet this bound [2]. Therefore, it is not 
surprising that good QT codes exist for many values of d , (n ,  k). 

QT codes were first characterized by Hill and Greenough [3]. They 
are a generalization of the class of quasi-cyclic (QC) codes in the 
same way that constacyclic codes are a generalization of cyclic codes 
[4], [5]. In this correspondence, only the subclass of rate l / p  QT 
codes constructed from m x m twistulant matrices is considered. 

A best QT code is defined as one which achieves the maximum 
possible minimum distance for a QT code. A good code is defined as 
one which has the maximum known minimum distance, i.e., it attains 
(or improves) the known lower bound on the minimum distance. 
An exhaustive search for a best code (using, say, integer linear 
programming) is intractable for all but the smallest code dimensions. 
Heuristic techniques provide a means of constructing good codes 
with a reasonable amount of computational effort. The quality of a 
code constructed in this manner can be determined by comparing it 
with a known bound. Lower bounds for linear codes over GF(3) for 
IC 5 n 5 50, have been tabulated by Kschischang and Pasupathy [5],  
and an improved table of both lower and upper bounds for these 
dimensions has recently been constructed by Daskalov, Hill, and 
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