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Abstract

We describe three new methods for obtaining superimposed codes in Euclidean spaces. With
help of them we construct codes with parameters improving upon known constructions. We also
prove that the spherical simplex code is not optimal as superimposed code at least for dimensions
greater than 9.
? 2003 Elsevier Science B.V. All rights reserved.
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1. Spherical superimposed codes

In [7,8], a class of superimposed codes for the Euclidean channel was introduced.
In this paper, we consider in detail this type of codes. As usual we shall denote
the n-dimensional Euclidean space by Rn and its elements will be called vectors or
points. The standard inner product (sometimes called correlation) between two vectors
x = (x1; x2; : : : ; xn) and y = (y1; y2; : : : ; yn) is de6ned as

〈x; y〉,
n∑

i=1

xiyi:

The Euclidean norm of the vector x is ‖x‖E ,
√〈x; x〉 =

√∑n
i=1 x2i . The distance

between x and y is dE(x; y)=‖x−y‖E. The induced metric is called Euclidean metric.
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For an arbitrary 6nite subset A={a(1); a(2); : : : ; a(T)} of Rn the minimum distance dE(A)
of A is

dE(A), min{dE(a(i); a(j)): i; j∈{1; : : : ; T}; i �= j}:
The space Rn can be considered as a linear space over the 6eld of real numbers R

in a natural way. For every subset C = {x(i) = (x(i)1 ; x(i)2 ; : : : ; x(i)n ) | i=1; 2; : : : T ; } of Rn,
denote by C∗

m the multi-set of all sums of at most m di?erent vectors from C. It can
happen that C∗

m contains some vectors more than once. In such a case, we obviously
have dE(C∗

m) = 0.
A special subset of Rn is the unit sphere 
n which consists of all vectors x of norm

1, i.e.


n , {x∈Rn | ‖x‖E = 1}:
Any subset of 
n is called spherical code. Every spherical code is characterized by its
minimum distance, which is the smallest distance between its di?erent points.

De�nition 1. The set C is called an (n; T; d)-spherical code if C ⊂ 
n, |C| = T and
dE(C) = d. The parameters n; T and d are called dimension, cardinality and minimum
distance of the code C, respectively.

Spherical codes are extensively studied in the literature [12,4,6,10,11,15,2]. The main
problem which is considered is 6nding the largest cardinality of a spherical code with
prescribed dimension and minimum distance. Here we impose some stronger conditions
on the codes.
Consider the following situation. Suppose that T users use a single channel and

the ith user is assigned two codewords, the all-zero vector 0 = (0; 0; : : : ; 0)∈Rn and
x(i)=(x(i)1 ; x(i)2 ; : : : ; x(i)n )∈Rn. It can be assumed that all non-zero codewords have a unit
energy. Before transmitting over the channel the codewords of the users are added as
in Rn. Suppose that no more than m users send a non-zero codeword and the channel is
disturbed by an additive white Gaussian noise. At the receiver end the decoder has to
decide which users have been active, i.e. have sent a non-zero codeword. This model
gives rise to the following de6nition.

De�nition 2. The set C is called an (n; d; m; T )-spherical superimposed code (SSC) if
C ⊂ 
n, |C|= T and dE(C∗

m) = d. The parameters n; d; m and T are called dimension,
minimum distance, order and cardinality of C, respectively.

Sometimes the condition that all code vectors have unit norm can be dropped. Instead
of this we require that all code points have to be within the unit sphere 
n. This
simpli6cation is also suggested from the model given above. As we shall see in most
of the constructions of SSCs, the exact determination of the minimum distance is
impossible. A lower bound on d is computed instead. Therefore, we shall say that any
(n; d; m; T )-SSC is also an (n; d0; m; T )-SSC, where 06d06d.
Since we want to include as many users in our system, we are interested in (n; d; m; T)-

SSC with as high T as possible for given set of parameters (n; d; m). We denote by
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T (n; d; m) the maximal T for which an (n; d; m; T )-SSC exists. The problem of deter-
mining the function T (n; d; m) is a very complicated one. Its exact value is known
only for a few sets of parameters.

2. Asymptotic results

Before proceeding with the constructions, we give some results on the asymptotic
behavior of T (n; d; m) as the dimension tends to in6nity. We de6ne the exponent of
increase as

E(m; d), lim sup
n→∞

1
n
log T (n; m; d):

The quantity E(m; d) is also known as the best possible rate of SSC with parameters
m and d.
A natural upper bound on T (n; d; m) is the sphere-packing bound [7,8] which states

|C∗
m|=

m∑
i=0

(
T (n; d; m)

i

)
6
(
m+ d=2
d=2

)n
=
(
1 +

2m
d

)n
: (1)

Direct consequence of this inequality is the following limitation on the exponent

E(m; d)6ESP(m; d),
1
m

logm[1 + o(1)]; m → ∞; (2)

where o(1) is a function which tends to zero as m tends to in6nity.
A recent signi6cant improvement of (2) is described in [13]. The authors show that

almost all sums of exactly m points of a code C are essentially gathered in a ball of
radius

√
m around a certain point. This leads to the following result.

Theorem 3 (FFuredi and RuszinkGo [13, Theorem 3.2]). The following bound on the
rate of SSCs is valid

E(m; d)6
1
2m

logm[1 + o(1)]; m → ∞: (3)

Unfortunately, this bound does not have its match for upper bounding the function
T (n; d; m). Theorem 3 shows that the sphere packing bound (1) is actually very weak.
Lower estimations on the rate of SSC are obtained by constructions. As usual in

the 6eld of coding theory, the best-known asymptotic lower bound is given by random
code construction. We do not discuss any details of the construction itself and give
only the 6nal result.

Theorem 4 (Ericson and GyFor6 [8, Theorem 1]). For the best possible rate of SSCs
we have

E(m; d)¿ERC(m; d),
1
4m

logm[1 + o(1)]; m → ∞: (4)
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It seems that the asymptotic behavior of E(m; d) does not depend on the choice of
minimum distance d. However, there is still a signi6cant gap between the lower and
upper bounds. A very interesting open question is the exact determination of this
behavior.

3. Summary of known constructions

Here we describe in brief some known techniques for constructing SSCs. All these
constructions can be found in [1].

Construction 5. An orthonormal basis of Rn forms an (n; 1; n; n)-SSC.

The points that form an orthonormal basis of Rn lie on a hyperplane of dimension
n−1. By projecting them onto Rn and some rescaling we obtain the so-called simplex
code on 
n−1. It can be easily checked that the following is true.

Construction 6. A simplex code on 
n−1 forms an (n− 1; 1; n− 1; n)-SSC.

Before proceeding with more advanced constructions, we give one way to obtain
SSCs in two dimensions.

Construction 7. A regular n-gon on 
2 forms an (2; d; k−1; n)-SSC, where d¿ 0 and
k is the least non-unit divisor of n.

The drawback of Construction 7 is that the actual minimum distance is diKcult to
compute.
All methods for deriving SCCs, which we shall give in the end of this section are

based on certain mappings from the set {0; 1; : : : ; p − 1} into R or R2. They can be
de6ned as follows:

AM1 : f(n)
1 (t) =

t√
n(p− 1)

;

AM2 : f(n)
2 (t) =

1√
n

(
1− 2t

p− 1

)
;

PhM : f(n)
3 (t) =

1√
n

(
cos

2�t
p

; sin
2�t
p

)
:

The 6rst more advanced construction of SSCs is described in [7].

Construction 8 (The EG construction). Let Cb be a binary linear [N; K; D]-code which
contains the all-one word. Let Cb be the set that is obtained from Cb by deleting all



D. Danev / Discrete Applied Mathematics 128 (2003) 85–101 89

words starting with 1 and deleting the 6rst coordinate from the rest. Suppose that

D¿d0 ,
a2(n+ 2)− 2a(n+ 1) + d2n

2a(a− 1)
(5)

for some d, 0¡d6 1, where a, min{T; 2m} and n=N − 1. Applying the mapping
AM2 to Cb, we obtain (n; d; m; T )-SSC.

As we shall see later on, this construction can be somehow generalized. Another
approach is to use p-ary representations of so-called As- and Bs-sets. We skip the
details given in [1, Chapter 5] and state the result.

Construction 9 (The A construction). Given a primitive polynomial of degree m + 1
over GF(q), we can obtain (n; d; m; T )-SSC with T=q+1 and the following parameters,
for any integer r¿ 2 and for v= (qm+1 − 1)=(q− 1)

AM1 : n= �logr v�+ 1; d=
1√

n(r − 1)
;

AM2 : n= �logr v�+ 2; d=
2√

n(r − 1)
;

PhM : n= 2�log3 v�+ 3; d=

√
6

n+ 1
; r = 3:

Another type of superimposed codes considered in [9] can be used for designing
SSCs. One possibility of doing this is summarized here.

Construction 10. Let p be a prime number and Cp be an (N;D;m; T )p-superimposed
code with m¡p. Applying the corresponding mapping and appending D zeroes to
every codeword of Cp in the last two cases, we obtain (n; d; m; T )-SSC with the fol-
lowing parameters:

AM1 : n= N; d¿
1

p− 1

√
D
N
;

AM2 : n= N + D; d¿
2

p− 1

√
D

N + D
;

PhM : n= 2N + D; d¿da

√
D

N + D
;

where da is the smallest distance between sums of m vertices of regular p-gon on 
2.

Extensive tables with codes obtained from the above constructions can be found
in [1]. We shall refer to those tables when we analyze the parameters of the codes
constructed in this paper.
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4. Codes of dimension two

We pay a special attention to superimposed codes on the unit circle. The reason for
doing this is twofold. For the 6rst, it is only Construction 7 that give good codes with
n=2 and it does not produce codes with even cardinalities. The second goal is to show
some exact values of the function d(n; m; T ) which is de6ned as the maximal possible
minimum distance of an SSC of dimension n, order m and cardinality T . Codes with
parameters (n; d(n; m; T ); m; T ) will be called dm-optimal. According to our de6nition,
all (n; 1; m; T )-SSCs are dm-optimal since d6 1 is always satis6ed. We refer to these
cases as trivial. The index m is not redundant. Simple examples are the simplex codes
of dimension n which are dn-optimal but not dn+1-optimal.
In order to simplify the descriptions we introduce some notations. First, we identify

R2 with the set of complex numbers C. Every point (a; b)∈R2 is associated with the
number a+ ib= !ei’, where i2 =−1. Every set on the unit circle can be represented
by a set of angles ’∈ [0; 2�) corresponding to its points. For example the set Ck ,
{’j = 2j�=k, j = 0; 1; : : : ; k − 1} represents a regular k-gon which has vertex (1,0). In
fact, all the codes that will be given here can be described as a subsets of Ck for some
k ∈N.
A natural way of obtaining codes with even cardinalities is to take away one point

from the regular polygon with one more vertex. However, the following construction
gives better minimum distances.

Construction 11. Let T be an even number which is not a power of 2. Let p be the
smallest odd prime divisor of T . Choose the set BT

p to be the subset of C2T consisting
of the angles

’i
k =

(
2k
p

+
i
T

)
�; k = 0; 1; : : : ; p− 1; i = 0; 1; : : : ; T=p− 1:

The exact determination of the minimum distance of the codes BT
p is not known in

the general case. We have computed it for the case p= 3.

Theorem 12. Let T be a positive integer number divisible by 6. Then the codes BT
3

given in Construction 11 have parameters (n; d; m; T ) = (2; 4 sin �=T sin �=2T; 2; T ).

Proof. First, we observe that the set (BT
3 )

∗
2 is preserved by the rotations through angle

2�=3 and center in the origin. It is also kept by the reMections in the lines along the
vectors corresponding to the angles ((2i+1)T−3)=6T�, i=0; 1; 2. Thus we can consider
the non-zero points of (BT

3 )
∗
2 which correspond to angles in the interval [0; 2�=3].

These points can be divided in three sets de6ned as B1 = {’i
0 | i = 0; 1; : : : ; T=3 − 1},

B2 = {’i
0 +’j

0 | i; j=0; 1; : : : ; T=3− 1; i �= j} and B3 = {’i
0 +’j

1 | i; j=0; 1; : : : ; T=3− 1}.
It is easy to see that the distance between two points from di?erent sets as well as
the distance of every point to the origin is at least 2 sin �=2T , which is the side-length
of the regular 2T -gon. Further, the points of B3 can be divided in “levels” by their
Euclidean norm. The minimum distance between the di?erent levels is 2 sin �=2T and
between the points on the level of radius r is 2r sin �=2T . The innermost level with
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at least 2 points has r = 2 sin �=T and thus dE(B3) = 4 sin �=T sin �=2T . By similar
arguments, we can deduce dE(B2) = 4 sin �=T sin �=2T . Clearly, dE(B1) = 2 sin �=2T
which concludes our proof.

For the case p¿ 3, we claim that the minimum distance of the constructed codes is
non-zero. Before proceeding with the proof of this fact, we need the following lemma.

Lemma 13. Let T be an even positive number that is not a power of 2 and p be its
least odd prime divisor. Then there are no opposite vectors in BT

p, i.e. vectors with
zero sum. Moreover, all regular p-gons with vertices in C2T are either completely
included or does not have points in BT

p.

Proof. Suppose 6rst that there are opposite points in BT
p. Then

�= |’i
k − ’j

l|=
∣∣∣∣2(k − l)

p
− i − j

T

∣∣∣∣ �
for some integers i; j; k; l such that i; j∈ [0; T=p−1] and k; l∈ [0; p−1]. This is impossi-
ble since p is an odd number and |i−j|=T ¡ 1=p. The second part follows directly from
the easy observation that all regular p-gons, which are subsets of C2T are {’i

k}p−1
k=0

for i = 0; 1; : : : ; 2T=p− 1.

Now we can give the main result concerning Construction 11.

Theorem 14. The codes BT
p described in Construction 11 are (2; d; p − 1; T )-SSCs

where d¿ 0.

Proof. Suppose that d = 0, which means that we have two di?erent sets M and N
of up to p − 1 points in BT

p which have the same sum. We can assume that M ∩
N = ∅. Let us denote by QN the set of opposite vectors to those in N . Then the sum
of the vectors in M ∪ QN is the zero vector. Since M ∪ QN ⊆ C2T this can happen only if
the points in M ∪ QN are all the vertices of a regular l-gon, where l|T and l¿ 2. We
have 16 |M ∪ QN |6 2(p− 1) and from the de6nition of T and p we get two possible
cases, namely |M ∪ QN | even or |M ∪ QN |= p. Both cases are excluded by Lemma 13.

Since the angle between any two lines through the origin and the points of a
(2; d; m; T )-SSC with m¿ 2 must be at least 2 arcsin(d=2), we obtain the following
upper bound on the minimum distance of such a code.

Proposition 15. If there exists a (2; d; m; T )-SSC with m¿ 2 and T¿ 3, then d6 2
sin(�=(2T )).

Proof. The only thing we must see is the obvious fact that the minimum angle between
T lines through the origin in R2 is at most �=T .



92 D. Danev / Discrete Applied Mathematics 128 (2003) 85–101

Table 1
Comparison of constructions 7 and 11 for codes of dimension n = 2 and order m = 2

T d7 d11 dub

6 0.24697960 0.51763809 0.51763809
10 0.16037889 0.17557050 0.31286893
12 0.11538526 0.13513066 0.26105238
14 0.08693075 0.09965775 0.22392895
18 0.05436845 0.06053774 0.17431149
20 0.04455177 0.04909482 0.15691819
22 0.03716936 0.04061049 0.14267837
24 0.03147895 0.03414728 0.13080626
26 0.02700081 0.02911129 0.12075699
28 0.02341378 0.02511159 0.11214089
30 0.02049636 0.02188238 0.10467191
34 0.01608661 0.01704508 0.09236691
36 0.01439706 0.01520672 0.08723877
38 0.01296024 0.01365035 0.08264994
40 0.01172818 0.01232115 0.07851963

For the special case of m=2, the bound from Proposition 15 is asymptotically better
than the sphere packing bound given in (1) as T → ∞. It is not surprising that for
larger m we have the opposite situation. A natural explanation is that the limitation on
the angles of the lines is quite weak in those cases.
To see the advantages of Construction 11 compared with Construction 7, we have

computed the actual minimum distances d for order m=2 and even cardinalities up to
40. The results are given in Table 1. The notation di refers to the minimum distance of
the codes obtained from the corresponding construction. The codes from Construction
7 are obtained by removing one point from the vertices of a regular (T + 1)-gon. We
list the corresponding upper bound obtained by Proposition 15 in the last column of
the table.
Another possibilities for choosing some points of Ck to obtain (2; d; m; T )-SSCs can

be investigated. This idea is promising as we can see from the following example.

Example 16. The code C0;1;4;7
10 consisting of vectors corresponding to the angles 0; �=5;

4�=5 and 7�=5, which is a subset of C10 is a (2; 2 sin(�=10); 2; 4)-SSC.

It is possible to show that the code in Example 16 satis6es d(2; 2; 4) = 2 sin(�=10).
With the aid of the bound from Proposition 15 we are able to determine two more
values of the function d(n; m; T ), namely d(2; 2; 3) = 1 and d(2; 2; 6) = 2 sin(�=12).
The codes achieving these values are C3 and B6

3, respectively. Observe that C3 is
d2-optimal, but clearly not d3-optimal. Further geometrical reasons reveal that d(2; 2; 5)=
d(2; 2; 6)= 2 sin(�=12). The known cases of dm-optimal codes with d¡ 1 are summa-
rized in Table 2.
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Table 2
Known dm-optimal spherical superimposed codes with d¡ 1

n m T d(n; m; T )

2 2 4 2 sin(�=10) ≈ 0:61802399
2 2 5 2 sin(�=12) ≈ 0:51763809
2 2 6 2 sin(�=12) ≈ 0:51763809

5. Non-optimality of the simplex codes

Let us denote by Sn the simplex code on 
n. A possible way of obtaining Sn is
the following. Take the standard basis e(i), i=1; : : : ; n+1 of the space Rn+1, consisting
of vectors with one in the ith position and zeros elsewhere. These vectors lie on the
intersection of 
n+1 and the hyperplane in Rn+1 de6ned by the equation

∑n+1
i=1 xi = 1.

De6ne f (i) =
√
(n+ 1)=n(e(i) − e=(n+ 1)), i= 1; : : : ; n+ 1, where e= (1; 1; : : : ; 1). The

points f (i) lie simultaneously on hyperplane through the origin in Rn+1 and 
n+1. Thus
they can be considered as points on 
n. We compute the inner product between the
di?erent vectors to be

〈f (i); f ( j)〉= n+ 1
n

(
〈e(i); e( j)〉 − 〈e(i) + e( j); e〉

n+ 1
+

〈e; e〉
(n+ 1)2

)
=−1

n
:

The simplex codes are optimal as spherical codes, i.e. they possess the best possible
minimum distance among all codes of dimension n and cardinality n + 1. They also
represent sets of least cardinality of points for interpolation formula for computing
integrals on 
n which are exact for every n-variable polynomial of total degree 2 or
lower. As we mentioned in the previous section, the codes Sn are dn-optimal but not
dn+1-optimal since they are (n; 0; n+ 1; n+ 1)-SSCs. The question we consider here is
whether the simplex codes have the best cardinality among all SSCs with parameters
(n; d; m)= (n; 1; n), i.e. whether T (n; 1; n)= n+1 for every integer n¿ 2. We saw that
this is the case when n = 2. However, this is not true in the general case. To prove
this fact we shall show that for n¿ 10 we can add a point to Sn so that we preserve
its superimposed parameters. We have the following representation of every point on

n.

Lemma 17. Let Sn = {f (i); i = 1; : : : ; n+ 1} ⊂ 
n be the simplex code de4ned above.
Then every point x on 
n can be represented in the form x =

∑n+1
i=1 xif (i), where∑n+1

i=1 xi = 0 and
∑n+1

i=1 x2i = n=(n+ 1).

Proof. Every point x∈
n is an image of some point y = (y1; : : : ; yn+1)∈
n+1, with∑n+1
i=1 yi = 1 under the transformation de6ning the simplex code. This means that the

following holds

x =

√
n+ 1
n

(
y − e

n+ 1

)
=

n+1∑
i=1

(
yi − 1

n+ 1

)√
n+ 1
n

(
e(i) − e

n+ 1

)
:
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De6ne xi = yi − 1=(n+1) for i=1; : : : ; n+1. Clearly,
∑n+1

i=1 xi =0 and for the sum of
the squares we have

n+1∑
i=1

x2i =
n+1∑
i=1

y2
i −

2
n+ 1

n+1∑
i=1

yi +
n

(n+ 1)2
=

n
n+ 1

:

Throughout this section, we represent a point x∈
n as in Lemma 17. It is easy to com-
pute that 〈x; f (i)〉=(n+1)=nxi. Suppose now that the set Sn∪x is an (n; 1; n; n+2)-SSC.
Without lost of generality, we assume x16 x26 · · ·6 xn+1. The next statement gives
the conditions which the coordinates xi, i = 1; : : : ; n+ 1 must satisfy.

Lemma 18. The set Sn ∪ x is an (n; 1; n; n+ 2)-SSC if and only if the inequalities

k∑
i=1

xi¿
k2

2(n+ 1)
− k

2
; k = 1; : : : ; n (6)

are satis4ed.

Proof. We 6rst show the suKciency of conditions (6). Let I and J be subsets of
{1; 2; : : : ; n + 1}, such that I ∩ J = ∅, |I | = k6 n − 1 and |J | = l6 n. Since Sn is
an (n; 1; n; n+ 1)-SSC we only have to prove that d(x +

∑
i∈I f

(i);
∑

j∈J f ( j))¿ 1 for
arbitrary choice of the sets I and J having the above properties. Since we chose the
point x to have x16 x26 · · ·6 xn+1 we consequently obtain

d2


x +

∑
i∈I

f (i);
∑
j∈J

f ( j)




=

〈
x +

∑
i∈I

f (i) −
∑
j∈J

f ( j); x +
∑
i∈I

f (i) −
∑
j∈J

f ( j)
〉

=1 + 2
n+ 1
n


∑

i∈I

xi −
∑
j∈J

xj +
k + l
2


− (k − l)2

n

¿ 1 + 2
n+ 1
n


 k∑

i=1

xi −
n+1∑

j=n+2−l

xj +
k + l
2


− (k − l)2

n

¿ 1 + 2
n+ 1
n


 k∑

i=1

xi +
n+1−l∑
j=1

xj +
k + l
2


− (k − l)2

n

¿ 1 +
k2 + l2

n
− (k − l)2

n
= 1 +

2kl
n
¿ 1:
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The necessity of conditions (6) follows in a similar way. This can be shown by us-
ing the inequalities ‖x +

∑k
i=1 f

(i)‖¿ 1, k = 1; : : : ; n − 1 and ‖x +
∑n

j=1 f
( j)‖2 =

d2(x; fn+1)¿ 1.

Now we can prove the fact that it is possible to extend the simplex code Sn with
additional point whenever n¿ 10.

Theorem 19. Let n¿ 10 and de4ne the point x=
∑n+1

i=1 f (i), where xi=
√
3=(n+ 2)(2i−

2− n)=(n + 1) for i = 1; 2; : : : ; n + 1. Then we have x∈
n and the set Sn ∪ x is an
(n; 1; n; n+ 2)-SSC.

Proof. The de6nition of x is correct since (n + 1)
√
(n+ 2)=3

∑n+1
i=1 xi =

∑n+1
i=1 (2i −

2− n) =−(n+ 1)n− 2(n+ 1) + 2
∑n+1

i=1 i = 0. To show that x∈
n, we compute
n+1∑
i=1

x2i =
3

(n+ 2)(n+ 1)2

n∑
i=0

(n− 2i)2

=
3

(n+ 2)(n+ 1)2

[
(n+ 1)n2 − 4n

n(n+ 1)
2

+ 4
n(n+ 1)(2n+ 1)

6

]

=
n

n+ 1
:

The inequalities x16 x26 · · ·6 xn+1 are obvious. In order to use Lemma 18 we de-
termine

k∑
i=1

xi =

√
3

n+ 2
1

n+ 1

k∑
i=1

(2i − 2− n) =

√
12

n+ 2

(
k2

2(n+ 1)
− k

2

)
:

Since the right-hand side of (6) is negative for k=1; : : : ; n it follows that it is satis6ed
for all n¿ 10 and thus Sn ∪ x is an (n; 1; n; n+ 2)-SSC.

As a consequence of the previous theorem we get the following lower bound on
T (n; 1; n).

Corollary 20. For every n¿ 10 we have T (n; 1; n)¿ n+ 2.

For the cases n6 9 it can be shown that it is not possible to add a point to the
code Sn while preserving its superimposed properties. However, it does not mean that
the simplex code is optimal in these cases. We already proved that T (2; 1; 2) = 3 and
thus S2 is optimal. The optimality of Sn for n= 3; 4; : : : ; 9 is still an open problem.

6. Generalization of the EG construction

Now we discuss some necessary conditions for a spherical code to posses certain
superimposed properties. Our investigations follow the spirit of the ideas behind the
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EG construction. If the correlation between the di?erent points of certain spherical
code lie in a given interval [s1; s2] ⊂ [ − 1; 1), under some conditions we can claim
that this code has given order m as a superimposed code. These conditions look very
complicated, but they prove to be useful in many cases.
We begin with de6ning a non-negative valued function g(m; T; s1; s2) in the following

manner. Let g(m; T; s1; s2) = gi(m; T; s1; s2) whenever (m; T; s1; s2)∈Mi ⊂ Z2
+ ⊗ R2, i =

1; 2; 3; 4; 5; 6. The functions gi(m; T; s1; s2) are de6ned as

g2i (m; T; s1; s2) =




(2m2 + T 2 − 2mT − T )s1 + 2m(m− T )s2 + T if i = 1;

(T (T − 2)s1 − T 2s2 + 2T )=2 if i = 2;

2m((m− 1)s1 − ms2 + 1) if i = 3;

m((m− 1)s1 + 1) if i = 4;

1 if i = 5;

0 if i = 6:

The regions Mi, i = 1; : : : ; 6 depend on the choice of parameters m; T; s1 and s2. Their
description is given below.

M1 =
{
(m; T; s1; s2) | − 1

m− 1
6 s16− 1

T
;
(T − m− 1)s1 + 1

2m
6 s26− s1;

(T − 1)(Ts1 + 1)
2m(T − m)

− s16 s26
T ((T − 1)s1 + 1)

2m(T − m)
− s1; m¡T ¡ 2m

}
;

M2 =
{
(m; T; s1; s2) |m6T ¡ 2m;− 1

T − 1
6 s16 0; s2¿− s1;

T (T − 2)s1 + 2(T − 1)
T 2 6 s26

(T − 2)s1 + 2
T

}
;

M3 =
{
(m; T; s1; s2) | 46 2m6T;− 1

m− 1
6 s16 0; s2¿

(m− 1)s1 + 1
2m

;

(m− 1)s1 + 1
m

− 1
2m2 6 s26

(m− 1)s1 + 1
m

}
;

M4 =
{
(m; T; s1; s2) | 26m6T;− 1

m− 1
6 s16− 1

m
; s2 = s1 if T = m;

s26
(a− m− 1)s1 + 1

2m
if m �= T and a=min{T; 2m}; s2¿ s1

}
;

M5 =
{
(m; T; s1; s2) | 26m6T; s26

(
1− 2

T

)
s1 + 2

(T − 1)
T 2 if m6T ¡ 2m;
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s26
(a− 1)(as1 + 1)

2m(a− m)
− s1 if m �= T and a=min{T; 2m};

s2¿ s1;− 1
m
6 s16 0

}
;

M6 = Z2
+ ⊗ R2

∖
5⋃

i=1

Mi

The function g(m; T; s1; s2) gives actually a lower bound on the minimum distance of a
certain spherical code considered as an SSC. The result is given in the next statement.

Theorem 21. Let m¿ 2 be an integer and C be an (n; T; d0)-spherical code such that
〈x; y〉 ∈ [s1; s2] for every x �= y in C. Then C is a (n; d= g(m; T; s1; s2); m; T )-SSC.

The proof of Theorem 21 can be found in [5]. Two particular cases of special interest
need to be stated here. The 6rst is when the interval [s1; s2] is symmetric around zero.

Corollary 22. Let C be an (n; T; d0)-spherical code with inner products within the in-
terval [s;−s], where −16 s6 0. Let m be a positive integer and de4ne a=min{2m; T}.
Then C is an (n; 1; m; T )-SSC if s∈ [− 1=a; 0] and (n;

√
a(1 + (a− 1)s); m; T )-SSC if

s∈ [− 1=(a− 1);−1=a].

Another interesting case is when we obtain superimposed codes with d=1 and many
points.

Corollary 23. Let C be a (n; T; d0)-spherical code with inner products in the interval
[s1; s2] and let m6T=2 be an integer number. If s1 ∈ [− 1=m; 0] and

s2 ∈
[
s1;

((m− 1)s1 + 1)
m

− 1
2m2

]
then C is an (n; 1; m; T )-SSC.

We can use Corollary 22 to see that Construction 8 is a particular case of Theorem
21. The only thing to show is that the mapping AM2 applied on the binary code
described in Construction 8 results in a spherical code with inner products in the
interval [(2D − n− 2)=n;−(2D − n− 2)=n]. Indeed, if the Hamming distance between
two binary vectors of length n is w, then the inner product between their images on 
n

after applying the mapping AM2 will be 1− 2w=n. It remains to see that the non-zero
Hamming distances of the pre-image lie in the interval [D; n + 1 − D]. Condition
(5) can be eased a little since the inner products actually lie in a smaller interval
[(2D − n− 2)=n; (n− 2D)=n].
Some applications of Theorem 21 will be given until the end of the section. First,

we consider spherical codes obtained from codes in the Grassmannian space G(n; 1)
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Table 3
Spherical superimposed codes derived from the best codes in G(n; 1) known

n d m T n d m T n d¿ m T n d¿ m T

6 1 2 8 11 1 3 14 6 0.453 2 12 12 0.930 3 17
7 1 2 10 12 1 3 16 7 0.819 2 14 12 0.342 3 20
8 1 2 13 13 1 3 19 9 0.442 2 30 13 0.831 3 20
9 1 2 18 14 1 3 20 10 0.554 2 40 14 0.993 3 21
10 1 2 20 15 1 3 23 11 0.289 2 54 14 0.808 3 23
11 1 2 26 16 1 3 26 11 0.161 2 60 15 0.985 3 24
12 1 2 39 12 1 4 14 12 0.826 2 48 15 0.227 3 30
13 1 2 52 13 1 4 15 13 0.808 2 54 16 0.600 3 31
14 1 2 54 14 1 4 16 14 0.999 2 55 11 0.663 4 13
15 1 2 50 15 1 4 18 8 0.719 3 10 13 0.663 4 16
16 1 2 50 16 1 4 20 9 0.719 3 12 14 0.947 4 17
9 1 3 11 15 1 5 17 10 0.530 3 14 15 0.776 4 19
10 1 3 12 16 1 5 18 11 0.483 3 17 14 0.648 5 16

(also known as real projective space PRn−1). This space consists of all lines in Rn

passing through the origin. A spherical code can be obtained from a set of such lines
(called code in G(n; 1)) in an obvious way. If L is a code in G(n; 1) of cardinality
|L| = M , then by choosing the intersection points of the lines from L with the unit
sphere we obtain spherical code C with 2M points. Such a code is called antipodal.
This code cannot be used as a superimposed code since the sum of the two points
obtained from one line is the all-zero vector. If we choose only one of the points for
each line in L in an arbitrary way, we get a spherical code C with M points. The code
L is characterized by the minimum angle * between its lines. An obvious statement is
that for any two points x; y∈C we have |〈x; y〉|6 cos *.

Constructions of codes in G(n; 1) can be found in [3]. The parameters of the best
codes known can be retrieved from [16]. Table 3 gives the parameters of some SSCs
obtained from these codes with the help of the construction given above. The lower
bound on the minimum distance is computed with the help of Corollary 22.
A general construction of sets of equiangular lines is given in [17, Theorem 6.3]. It

turns out that these sets are optimal codes in G(n; 1) [3]. We can use them to obtain
good SSCs.

Proposition 24. Let n be an odd positive integer number such that conference matrix
of order 2n exists. If m is a positive integer number for which n¿ 2m2 + 1, then
there exists (n; 1; m; 2n)-SSC.

Another approach is a direct use of spherical codes and check their superposition
properties with the help of Theorem 21. A table of optimal spherical codes is given
in [15, Table 9.1]. We obtain two series of SSCs.

Proposition 25. If n is a positive integer number and q¿ 3 is a power of a prime
then there exist (n; 1; n; n+ 1)- and (q(q2 − q+ 1); 1; q− 1; (q+ 1)(q3 + 1))-SSCs.
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The 6rst sequence is obtained from simplex codes and was already mentioned. The
second corresponds to a construction of optimal spherical codes described in [14]. From
the other codes in [15, Table 9.1] we obtain only three other interesting SSCs. They
have parameters (21; 1; 2; 162), (22; 1; 2; 100) and (22; 1; 2; 275), respectively.

7. Tensor product construction

Here we describe one way of combining two SSCs into another and discuss its
parameters. The codes that we obtain are not asymptotically “good”, but they represent
the best codes known for certain small parameters.
Let us consider the Euclidean spaces Rn and Rk for some positive integer numbers n

and k. Denote the standard bases of these spaces by e(i), i=1; : : : ; n and f ( j), j=1; : : : ; k,
respectively. We consider the linear mapping

⊗ :Rn × Rk �→ Rnk

de6ned on the basis as

⊗(e(i); f ( j)) = hij

and extended on the whole set Rn × Rk by linearity. Here {hij}n;ki=1; j=1 denotes the
standard basis of Rnk . We shall write x ⊗ y instead of ⊗(x; y). This means that for
every two vectors x =

∑n
i=1 xie(i) ∈Rn and y =

∑k
j=1 yjf ( j) ∈Rk we have

x ⊗ y =
n∑

i=1

k∑
j=1

xiyj:e(i) ⊗ f ( j) =
n∑

i=1

k∑
j=1

xiyj:hij :

This mapping is known as tensor product of Rn and Rk . We give some properties of
the tensor product. Let x; z∈Rn and y;w∈Rk . Direct consequence of the de6nitions
is the following equality:

〈x⊗ y; z ⊗ w〉= 〈x; z〉〈y;w〉: (7)

Particular case is the property 
n⊗
k ⊆ 
nk . Thus the tensor product of two spherical
codes is also a spherical code. Moreover, the inner products of the obtained code can
be determined with the help of the inner products of the building codes. This is stated
below.

Proposition 26. Let Ci ⊂ 
ni , i=1; 2 be two spherical codes and let Ai={s(i)1 ; s(i)2 ; : : : ;
s(i)ki−1; s

(i)
ki = 1}, i = 1; 2 be the sets of their inner products. Then the set of the inner

products of the code C = C1 ⊗ C2 is A= {s(1)l1 s(2)l2 | li = 1; 2; : : : ki; i = 1; 2}.

We can use Theorem 21 to 6nd the parameters of C = C1 ⊗ C2 as a superimposed
code. In order to do this we have to 6nd the interval where the non-unit inner products
of C are situated. We can 6nd it with the help of Proposition 26. Namely, if [s(i)1 ; s(i)ki−1],
i=1; 2 are the corresponding intervals for the codes Ci, i=1; 2, then the non-unit inner
products of C = C1 ⊗ C2 are within the interval

[min{s(1)1 ; s(2)1 ; s(1)k1−1s
(2)
k2−1};max{s(1)k1−1; s

(2)
k2−1; s

(1)
1 s(2)1 }]:
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We cannot expect the tensor product code to have higher order than any of its building
codes. Indeed, due to (7) an isometric image, x(1) ⊗ C2 or C1 ⊗ x(2), where x(i) ∈Ci,
i = 1; 2, of any of the codes Ci, i = 1; 2 is included as a subcode in C = C1 ⊗ C2.
The 6rst application that we show is combining orthonormal basis from Construction

5 and simplex code Sn.

Theorem 27 (Tensor product of orthogonal and simplex code). There exists an (n1n2;
1; n2; n1(n2 + 1))-SSC for every n1; n2 ∈N.

Proof. If we take the tensor product of an orthonormal basis of Rn1 and a simplex
code Sn2 ⊂ Rn2 we obtain a spherical code of dimension n1n2 with inner products in
the set {−1=n2; 0; 1}. We can apply Corollary 23 with s1 = −1=n2 and s2 = 0 to see
that it is actually an (n1n2; 1; n2; n1(n2 + 1))-SSC.

It is natural to consider the tensor product of spherical codes with small number
of inner products between their points. The next step is to investigate the parameters
of SCCs of type Sn1 ⊗ Sn2 . We can assume that n16 n2. Since the inner products
of these codes are in the interval [− 1=n1; 1=(n1n2)], Corollary 23 gives the following
result.

Lemma 28. For every n1; n2 ∈N such that n2¿ 2n1 there exists an SSCs with pa-
rameters (n; d; m; T ) = (n1n2; 1; n1; (n1 + 1)(n2 + 1)).

It is easy to see that the order of Sn1 ⊗ Sn1 is less than n1 since there are two
equal sums of the vectors from two di?erent sets of cardinality n1. If the tensor product
consists of the points {ai ⊗ bj | i; j = 1; 2; : : : ; n1 + 1} then these sets can be de6ned as
{ai ⊗ bn1+1 | i = 1; : : : ; n1} and {an1+1 ⊗ bj | j = 1; : : : ; n1}. It is possible to prove that
Sn1 ⊗Sn1 is an (n21; 1; n1 − 1; (n1 + 1)2)-SSC.
The cases not covered by Lemma 28 are given below.

Theorem 29 (Tensor product of simplex codes). Let n1; n2 ∈N and n16 n2. Then
there exists an (n1n2; 1; n1 − +n1n2 ; (n1 + 1)(n2 + 1))-SSC, where + is the Kroneker
symbol.

The above codes are with best known cardinality for the corresponding parameters
at least in the cases (n1; n2)∈{(2; 3); (3; 4); (3; 5); (3; 6); (3; 7); (3; 8); (4; 5); (4; 6); (4; 7);
(4; 8); (5; 6); (5; 7); (5; 8)}. For large n2 − n1 this construction does not reveal codes
with “good” cardinality, but the regular structure can somehow facilitate the decoding
procedure.
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