
Theoretical Computer Science 306 (2003) 223–243
www.elsevier.com/locate/tcs

Constructions of generalized superimposed codes
with applications to group testing and con"ict

resolution in multiple access channels�

Annalisa De Bonis∗ , Ugo Vaccaro
Dipartimento di Informatica e Applicazioni, Universit�a di Salerno, 84081 Baronissi (SA), Italy

Received 6 September 2002; received in revised form 31 March 2003; accepted 2 April 2003
Communicated by D-Z. Du

Abstract

In this paper we introduce a parameterized generalization of the well known superimposed
codes. We give algorithms for their construction and provide non-existential results. We apply
our new combinatorial structures to the e5cient solution of new group testing problems and
access coordination issues in multiple access channels.
c© 2003 Elsevier B.V. All rights reserved.

Keywords: Group testing; Multiaccess channels; Superimposed codes; Cover-free families

1. Introduction

Superimposed codes were introduced in the seminal paper by Kautz and Singleton
[29]. Since then, they have been extensively studied both in the coding theory com-
munity (see [16–19,33,34,44] and the references quoted therein) and the combinatorics
community under the name of cover free families [21,23,40,41]. Informally, a collection
of subsets of a =nite set is r-cover free if no subset in the collection is included in the
union of r others. One gets the binary vectors of a superimposed code by considering
the characteristic vectors of members of an r-cover free family.

� This work was partially supported by Italian Ministry of Education, University and Research under the
PRIN project: “RESOURCE ALLOCATION IN WIRELESS NETWORKS (REALWINE)”. An extended abstract
of this paper was presented at ESA 2002.

∗ Corresponding author.
E-mail addresses: debonis@dia.unisa.it (A. De Bonis), uv@dia.unisa.it (U. Vaccaro).

0304-3975/03/$ - see front matter c© 2003 Elsevier B.V. All rights reserved.
doi:10.1016/S0304-3975(03)00281-0

mailto:debonis@dia.unisa.it
mailto:uv@dia.unisa.it

224 A. De Bonis, U. Vaccaro / Theoretical Computer Science 306 (2003) 223–243

Superimposed codes are a very basic combinatorial structure and =nd application
in an amazing variety of situations, ranging from cryptography and data security
[1,10,20,37,31,42] to computational molecular biology [2,13,15,24], from multiaccess
communication [15,29] to database theory [29], from pattern matching [27] to dis-
tributed coloring [32], circuit complexity [7], broadcasting in radio networks [11], and
other areas of computer science.

In this paper we introduce a parameterized generalization of superimposed codes.
For particular values of the parameters our codes reduce to the classical Kautz and
Singleton superimposed codes. Our codes also include a =rst generalization of super-
imposed codes proposed in [19], and the combinatorial structures considered in [28].
For our generalized superimposed codes we provide constructions and non-existential
results, both aspects have relevance to the application areas considered in this paper.
Our motivations to introduce the generalization comes from new algorithmic issues in
Combinatorial Group Testing and Con3ict Resolution in Multiple Access Channels.

1.1. Combinatorial group testing

In group testing, the task is to determine the positive members of a set of objects O
by asking subset queries of the form “does the set Q⊆O contain a positive object?”.
The very =rst group testing problem arose almost sixty years ago in the area of chemi-
cal analysis [14], where it was employed as a blood test technique to detect the infected
members of a population. Since then, combinatorial group testing has exhibited strong
relationships with several computer science subjects: algorithms, complexity theory,
data compression, computational geometry, and computational learning theory, among
others. The recent monograph by Du and Hwang [15] gives an excellent account of
these aspects. Combinatorial group testing is also experiencing a renaissance in Com-
putational Molecular Biology where it =nds ample applications for screening libraries
of clones with hybridization probes [4,6] and sequencing by hybridization [35,39]. We
refer to [15,22,24] for an account of the fervent development of the subject.

More to our points, recent work [22] suggests that classical group testing procedures
should take into account also the possibility of the existence of “inhibitory items”, that
is, items whose presence in the tested set could render the outcome of the test mean-
ingless, as far as the detection of positive items is concerned. In other words, if during
the execution of an algorithm we tested a subset Q⊆O containing positive objects and
inhibitory items, we would get the same answer as Q did not contain any positive
object. Similar issues were considered in [12,25] where additional motivations for the
problem were given. In Section 4 we show that our generalized superimposed codes
play a crucial role in estimating the computational complexity of this new group testing
problem. More precisely, our codes represent both a basic tool in designing e5cient
algorithmic solutions for the problem at hand, and also in deriving a general lower
bound on the number of subset queries to be performed by any algorithm solving it.

1.2. Con3ict resolution in multiple access channels

Loosely speaking, with multiple access channels we intend communication media that
interconnect a number of users and in which any packet transmission by a single user is

A. De Bonis, U. Vaccaro / Theoretical Computer Science 306 (2003) 223–243 225

broadcasted to all other users connected to the channel. Multiple access channels have
been implemented on coaxial cable, =ber optics, packet radio, or satellite transmission
media; a well known example is the ETHERNET (see for instance [5] for references
in this area).

A model commonly taken as basis for mathematical studies of multiple access chan-
nels assumes that the whole system is synchronous, and that at each time instant any
number of users can transmit a packet of data over the channel. There is no central
control. If just one user transmit its packet in a given time unit, the packet is success-
fully broadcasted to every other user, if more than one user transmit in a same time
unit, then all packets are lost because of interference. All users on the channel have the
capability of detecting which one of the following events hold: no packet transmission,
successful transmission of just one packet, interference due to packet con"ict. A key
ingredient for an e5cient use of multiple access channels is a con3ict resolution algo-
rithm, that is, a protocol that schedule retransmissions so that each of the con"icting
users eventually transmit singly (and therefore successfully) on the channel. A con"ict
resolution algorithm may be used to coordinate access to the channel in the following
way. Access alternates between time instants in which access is unrestricted and time
instants in which access is restricted to resolve con"icts. Initially access is unrestricted
and all users are allowed to transmit packets at their wish. When a con"ict arises,
only the involved users execute an algorithm to resolve it and the other users abstain
from transmitting. After con"ict resolution, access to the channels is again unrestricted
(more on this scenario in Section 5).

Con"ict resolution in multiple access channels is a source of many challenging al-
gorithmic problems, we refer the reader to the survey paper [9] for a nice account
of the vast literature on the topic. The great majority of this body of work assumes
the standard hypothesis that con"ict arises if more than one user try to transmit at the
same time on the channel. However, already in the 1980s Tsybakov et al. [43] studied
multiple access channels in which simultaneous transmission of up to c¿2 users is
allowed, and con"ict arises if strictly more that c users try to transmit at the same
time instant. Also, a somewhat similar scenario has been considered in [36], where
there are servers and clients, and each server can successfully ful=ll up to c simultane-
ous client requests; if more than c client requests are submitted to a same server then
none of them are ful=lled. The problem here is to schedule all client requests so as to
satisfy all of them. It is clear that to fully exploit these new capabilities, new con"ict
resolutions algorithms must be devised.

The contributions of our paper to this issue are presented in Section 5, where it is
essentially shown that our generalized superimposed codes are in a sense equivalent
to totally non-adaptive con"ict resolution protocols for these more powerful multiple
access channels, just as like classical superimposed codes corresponds to totally non-
adaptive con"ict resolution protocols on the standard multiple access channel [29,30].
Informally, with totally non-adaptive con"ict resolution protocols we mean the follow-
ing: The retransmission schedule of each user is =xed (i.e., does not depend on the
time in which the con"ict occurs and on the set of con"icting users), and known be-
forehand the con"ict event occurs. Therefore, the behavior of each user is =xed and
does not need to adapt to the behavior of other users. In contrast, adaptive con"ict

226 A. De Bonis, U. Vaccaro / Theoretical Computer Science 306 (2003) 223–243

resolution protocols are more "exible; for instance, they can query other users to =nd
out the identities of the con"icting ones and, on the basis of this acquired knowledge,
schedule the retransmissions to solve the con"ict. Totally non-adaptive con"ict resolu-
tion protocols have obvious advantages over adaptive ones, of course at the expenses
of possibly longer con"ict resolution schedules. Adaptive con"ict resolution protocols
in our scenario have been given in [8].

1.3. Structure of the paper and summary of results

In Section 2 we introduce the basic concepts and we de=ne our generalized superim-
posed codes; we also point out their relationships with previously known combinatorial
structures. In Section 3 we present upper and lower bounds on the length of generalized
superimposed codes; this is equivalent to giving algorithms for constructing generalized
superimposed codes with “many codewords” and to proving non-existential results. It
is worth pointing out that our upper bounds, that holds in much more generality, also
imply the best known upper bound O(r2 log n) on the length of classical superimposed
codes [18,21,26].

In Section 4 we present the application of our codes to the design of e5cient algo-
rithms for group testing in presence of inhibitors. Moreover, we show that our codes
play an important role also in bounding from below the complexity of any algorithm
for group testing in presence of inhibitors. In Section 5 we formally de=ne the multiple
access channel under study, we provide an algorithm for con"ict resolution and we esti-
mate its performance in terms of the codeword length of our generalized superimposed
codes.

2. Basic de�nitions

A set C= {c1; : : : ; cn} of n binary vectors of length N is called a binary code of
size n and length N . Each cj is called codeword and for any i, 16i6N , cj(i) denotes
the ith entry of cj. A binary code C can be represented by an N × n binary matrix
MC = ‖cj(i)‖, i=1; : : : ; N and j=1; : : : ; n, with codewords as columns. A binary code
is said k-uniform if all columns have exactly k entries equal to 1.

For each binary vector cj of length N , let Scj denote the subset of {1; : : : ; N} de=ned
as Scj = {i∈{1; : : : ; N}: cj(i)= 1}: Therefore, to any binary code C= {c1; : : : ; cn} of
length N we can associate a family F= {Sc1 ; : : : ; Scn} of subsets of {1; : : : ; N}. It is
clear that this association is invertible, that is, from a family of subsets of {1; : : : ; N}
one uniquely gets a binary code C of length N: The set {1; : : : ; N} will be called the
ground set of F.

Given q¿1 codewords (columns) c‘1 ; : : : ; c‘q , we denote with (c‘1 ∨ · · · ∨ c‘q) the
boolean sum (OR) of c‘1 ; : : : ; c‘q . We say that the column ch is covered by the column
cj if any 1 entry of ch corresponds to a 1 entry of cj.

De�nition 1. Let p, r and d be positive integers and let d6r. We call a binary
code C= {c1; : : : ; cn}, with n¿p + r, (p; r; d)-superimposed if for any distinct p + r

A. De Bonis, U. Vaccaro / Theoretical Computer Science 306 (2003) 223–243 227

codewords ch1 ; : : : ; chp ; c‘1 ; : : : ; c‘r there exist distinct r − d + 1 indices j1; : : : ; jr−d+1 ∈
{‘1; : : : ; ‘r} such that (ch1 ∨ · · · ∨ chp) is not covered by (cj1 ∨ · · · ∨ cjr−d+1). The mini-
mal length of a k-uniform (p; r; d)-superimposed code of size n is denoted by
N (p; r; d; k; n), whereas that of an arbitrary (p; r; d)-superimposed code of size n is
denoted by N (p; r; d; n).

Informally, the family of subsets associated to the binary vectors of a (p; r; d)-
superimposed code is such that for any p subsets and any r subsets, there exist r−d+1
subsets among the r’s such that the union of the p subsets are not included in the
union of the r − d + 1’s. Notice that (p; r; d)-superimposed codes are a generalization
of the superimposed codes introduced by Kautz and Singleton [29] which corresponds
to our de=nition for the case p=d=1. The families of sets associated to such codes
are often referred to with the name of r-cover free families and have been extensively
studied in the =eld of Extremal Set Theory [21,40]. An r-cover free family is such
that no member of the family is contained in the union of any other r members of the
family.

Dyachkov and Rykov [19] generalized r-cover families by introducing (p; r)-cover
free families. A family is said (p; r)-cover free if the union of any p members of
the family is not contained in the union of any other r members of the family.
A (p; r)-cover free family corresponds exactly to our codes with parameter d=1.
Finally the combinatorial structure considered in [28] coincides with ours for p=1
and d= r.

3. Bounds on the length of (p; r; d)-superimposed codes

In this section we will present upper and lower bounds on the length N (p; r; d; n)
of (p; r; d)-superimposed codes with n codewords.

Theorem 1. Let n¿r¿d¿1 and p¿1.
If 2r ¡ (d− 1)p then it results

N (p; r; d; n)=O
(
(r + p) log

n
r + p

)
: (1)

If 2r¿(d− 1)p then it results

N (p; r; d; n)=O
(

r(r + p)
pd

log
n

r + p

)
: (2)

Proof. For the simple case d=1 the upper bound (2) follows immediately from The-
orem 5 of [19]. For that reason we will prove the theorem only for the case when
d¿2. The theorem will be proved by using the probabilistic method.

Let MC = ‖cj(i)‖ be an N × n a random binary matrix where each entry has
probability b of being 1 and probability 1 − b of being 0. For h1; : : : ; hp ∈{1; : : : ; n}
and ‘1; : : : ; ‘r ∈{1; : : : ; n}\{h1; : : : ; hp}, we say that the columns ch1 ; : : : ; chp are bad for

228 A. De Bonis, U. Vaccaro / Theoretical Computer Science 306 (2003) 223–243

c‘1 ; : : : ; c‘r , if there is no i∈{1; : : : ; N} such that the ith entry of (ch1 ∨ · · · ∨ chp) is
equal to 1 and cj1 (i)=cj2 (i)= · · · = cjq(i)= 0, for some subset {j1; : : : ; jq}⊆{‘1; : : : ; ‘r}
with q¿r − d + 1. In other words, the columns ch1 ; : : : ; chp are bad for c‘1 ; : : : ; c‘r if
for any r − d + 1 pairwise distinct indices j1; : : : ; jr−d+1 ∈{‘1; : : : ; ‘r}, one has that
(ch1 ∨ · · · ∨ chp) is covered by (cj1 ∨ · · · ∨ cjr−d+1). The binary matrix MC represents
a (p; r; d)-superimposed code if and only if there do not exist r + p pairwise dis-
tinct columns ch1 ; : : : ; chp ; c‘1 ; : : : ; c‘r such that ch1 ; : : : ; chp are bad for c‘1 ; : : : ; c‘r . In the
following we will derive an upper bound on the probability that MC contains such
r + p columns and will show that for large enough values of N this probability can
be made smaller than one. It follows that, for suitable values of N , the probability that
the matrix MC does not represent a (p; r; d)-superimposed code is smaller than one
and consequently there must exist a binary matrix with N rows that does represent a
(p; r; d)-superimposed code.

For any i∈{1; : : : ; N} and any r + p pairwise distinct indices h1; : : : ; hp; ‘1; : : : ; ‘r ∈
{1; : : : ; n}, we de=ne Pi as the probability that the ith entry of (ch1 ∨ · · · ∨ chp) is 1
and that there exists a subset {j1; : : : ; jq}⊆{‘1; : : : ; ‘r}, with q¿r − d + 1, such that
cj1 (i)= cj2 (i)= · · · = cjq(i)= 0. The probability Pi is equal to

Pi = Pr{(ch1 ∨ · · · ∨ chp)(i) = 1}

·Pr{at most d− 1 of c‘1 (i); : : : ; c‘r (i) are equal to 1}: (3)

We notice that the probability Pi is indeed independent from the value of i. The
probability that columns ch1 ; : : : ; chp are bad for columns c‘1 ; : : : ; c‘r is

N∏
i=1

(1− Pi):

By the union bound the probability that the matrix MC does not represent a (p; r; d)-
superimposed code is upper bounded by(

n
r + p

)(
r + p

p

)
N∏

i=1
(1− Pi): (4)

We want to determine an upper bound on the above expression by deriving a lower
bound on Pi.

We =rst obtain a lower bound on

Pr{at most d− 1 of c‘1 (i); : : : ; c‘r (i) are equal to 1}: (5)

Let Xi denote the random variable that counts how many entries among c‘1 (i); : : : ; c‘r (i)
are equal to 1. The random variable Xi is the sum of r Bernoulli random variables each
having probability b of being 1. Hence, Xi has a binomial distribution with expectation
�= br. One has

Pr{at most d− 1 of c‘1 (i); : : : ; c‘r (i) are equal to 1}

= Pr{Xi 6 d− 1} = 1− Pr{Xi ¿ d− 1}: (6)

A. De Bonis, U. Vaccaro / Theoretical Computer Science 306 (2003) 223–243 229

ChernoQ bound (see Theorem 4.1 of [38]) says that for any �¿0 the following in-
equality holds:

Pr{Xi ¿ (1 + �)�}¡
(

e�

(1 + �)1+�

)�

: (7)

By setting the probability b of 1 to (d− 1)=2r and putting �=1 in expression (7) one
gets

Pr{Xi ¿ d− 1}¡
(e
4

)(d−1)=2
: (8)

For d¿2 the right hand-side of the above inequality is smaller than or equal to
(e=4)1=2¡0:83. Hence one has that

Pr{at most d− 1 of c‘1 (i); : : : ; c‘r (i) are equal to 1}¿ 17=100: (9)

In order to derive a lower bound on Pi we need also to derive a lower bound on

Pr{(ch1 ∨ · · · ∨ chp)(i) = 1} = 1− (1− b)p: (10)

Since b=(d− 1)=2r, one gets that expression (10) is equal to 1− (1− (d− 1)=2r)p

which we limit from below by considering the following two cases.
Case 1: 2r¡(d− 1)p.
Under this hypothesis we also have p¿2. Since it is (d− 1)=2r¿1=p then one has(

1− d− 1
2r

)p

¡
(
1− 1

p

)p

¡
(
1− 1

p

)p−1

=
1

(1 + 1=(p− 1))p−1 6 1=2;

for any p¿2. Consequently one has

Pr{(ch1 ∨ · · · ∨ chp)(i) = 1} = 1−
(
1− d− 1

2r

)p

¿ 1=2: (11)

From inequalities (9) and (11) one has that Pi¿17=200. It follows that the value
of expression (4), representing an upper bound on the probability that MC does not
constitute a (p; r; d)-superimposed code, is less than(

n
r + p

)(
r + p

p

)
(183=200)N :

In order to make the above value smaller than 1, it is su5cient that

N ¿
ln
((

n
r+p

)(
r+p
p

))
− ln(183=200)

:

Therefore,

N (p; r; d; n)6
⌈

1
ln(200=183)

ln
((

n
r + p

)(
r + p

p

))⌉
+ 1: (12)

230 A. De Bonis, U. Vaccaro / Theoretical Computer Science 306 (2003) 223–243

The asymptotic bound (1) now follows from inequality (12) and the well known
inequality

(
a

b

)
6
(
e
a
b

)b
: (13)

Case 2: 2r¿(d− 1)p.
It results

Pr{(ch1 ∨ · · · ∨ chp)(i) = 1}

= 1−
(
1− d− 1

2r

)p

=
p∑

j=0

(
p

j

)(
1− d− 1

2r

)p−j (d− 1
2r

)j

−
(
1− d− 1

2r

)p

=
p∑

j=1

(
p

j

)(
1− d− 1

2r

)p−j (d− 1
2r

)j

¿ p
(
1− d− 1

2r

)p−1(d− 1
2r

)
: (14)

Since it is (d− 1)=2r61=p then one has

(
1− d− 1

2r

)p−1

¿
(
1− 1

p

)p−1

=
1

(1 + 1=(p− 1))p−1 ¿
1
e
: (15)

It follows that 1− (1− (d− 1)=2r)p¿p1=e(d− 1)=2r. The previous inequality and
(9) imply that Pi¿17=100p1=e(d − 1)=2r. It follows that the value of expression (4)
is at most

(
n

r + p

)(
r + p

p

)(
1− 17

200e
p(d− 1)

r

)N

:

In order to make the above expression smaller than 1, it is su5cient that

N ¿
ln
((

n
r+p

)(
r+p
p

))
− ln(1− 17=200ep(d− 1)=r)

:

A. De Bonis, U. Vaccaro / Theoretical Computer Science 306 (2003) 223–243 231

Since for 06x¡1 it is − ln(1 − x)¿x, then it follows that the expression on the
right hand-side of the above inequality is less than or equal to

(
200e
17

r
p(d− 1)

)
ln
((

n
r + p

)(
r + p

p

))
:

Therefore,

N (p; r; d; n)6
⌈
200e
17

r
p(d− 1)

ln
((

n
r + p

)(
r + p

p

))⌉
+ 1: (16)

The asymptotic bound (2) follows from inequalities (13) and (16).

In the following we will provide a greedy construction for (p; r; d)-superimposed
codes which attains a better bound than Theorem 1 for r =o(d2 + d

√
p) and for

2r¿p(d− 1) if p=o(d).
Let C= {c1; : : : ; cn} be a binary code of length N . For any cj, j=1; : : : ; n, let kj

denote the number of entries equal to 1 in cj and let k = minj=1;:::; n{kj}. Further, for
any pair of codewords ch and cj, let �h; j denote the dot product of ch and cj, i.e., the
number of entries both ch and cj have a 1. We de=ne R�= maxh; j=1;:::; n; h �=j{�h; j}.

Lemma 1. Let C= {c1; : : : ; cn} be a binary code of length N . If �r R�=k¡d then C is
a (1; r; d)-superimposed code.

Proof. Let ch; c‘1 ; : : : ; c‘r ∈C and let i1; : : : ; ikh denote the indices of the entries ch has
a 1. Each of columns c‘1 ; : : : ; c‘r has at most R� entries equal to 1 among those with
indices in {i1; : : : ; ikh}. Consequently, the submatrix formed by restricting c‘1 ; : : : ; c‘r to
rows with indices in {i1; : : : ; ikh}, will contain at most r R� entries equal to 1. Hence,
there must exist a row of such submatrix with at most �r R�=kh6�r R�=k¡d entries
equal to 1. It follows that there exist at least r − d + 1 columns among c‘1 ; : : : ; c‘r
whose union does not cover ch.

Theorem 2. Let n, r and d be positive integers and let d6r6n. It results that

N (1; r; d; n) ¡ 24
(r
d

)2
(log2 n + 2):

Proof. In order to prove the theorem, we will show how to construct a code C verifying
the hypothesis of Lemma 1. To this aim, we will use a construction technique similar
to that of Hwang and Sos [26].

Let {0; 1}Nk denote the set of all binary columns of length N with k entries equal
to 1. The procedure to construct C works as follows. Initially we set C0 = ∅ and
T0 = {0; 1}Nk . For t =1; 2; : : : ; we select a codeword ct arbitrarily from Tt−1 and set
Ct =Ct−1 ∪{ct}: Then, we de=ne Tt as the set obtained by discarding from Tt−1 all
codewords cj with �t; j¿�dk=r�. The procedure will continue until Tt = ∅:

232 A. De Bonis, U. Vaccaro / Theoretical Computer Science 306 (2003) 223–243

Since it is |C|= |Ct |= t then the size of the resulting code is given by the number
of steps executed by the procedure.

Notice that at each step the number of discarded codewords is at most

k∑
i=�dk=r�

(
k
i

)(
N − k
k − i

)
:

As a consequence,

|C|¿

(
N
k

)
∑k

i=�dk=r�
(

k
i

)(
N−k
k−i

) :

Let bi =
(k
i

)(N−k
k−i

)
, i=1; : : : ; k. For i= �dk=rc�; : : : ; k, one has that

bi

bi−1
=

(k − i + 1)2

i(N − 2k + i)
6

(k − �dk=rc�+ 1)2

�dk=rc�(N − 2k + �dk=rc�) : (17)

Let us set N = �3c2kr=d for some constant integer c¿2. Then it is

(k − �dk=rc�+ 1)2

�dk=rc�(N − 2k + �dk=rc�) ¡
1
c

and consequently it results

k∑
i=�dk

r �
bi ¡

k∑
i=�dk

r �

(
1
c

)i−�dk=rc�
b�dk=rc�

¡ b�dk=rc�

(
1
c

)−�dk=rc�(1− (1=c)k+1

1− 1=c
− 1− (1=c)�dk=r�

1− 1=c

)

¡ b�dk=rc�
c2

c − 1

(
1
c

)�dk=r�((c−1)=c)

:

It is easy to verify that(
N
k

)
¿ b�dk=rc�;

and consequently,

|C|¿

(
N
k

)
∑k

i=�dk=r� bi

¿
c − 1
c2

c�dk=r�(c−1=c) ¿
c − 1
c2

c(d=r)
2N=6c2 :

A. De Bonis, U. Vaccaro / Theoretical Computer Science 306 (2003) 223–243 233

Hence, it results

N ¡ 6c2
(r
d

)2
(
logc |C|+ logc

(
c2

c − 1

))
:

By setting c=2 in the previous inequality one gets

N ¡ 24
(r
d

)2
(log2 |C|+ 2);

from which the theorem follows.

Since N (p; r; d; n)6N (1; r; d; n) then Theorem 2 implies the following corollary.

Corollary 1. Let n, p, r and d be positive integers and let d6r and p + r6n. It
results that N (p; r; d; n)¡24(r=d)2(log2 n + 2).

It is worth pointing out that in the above results, for p=d=1, we recover the best
known upper bound O(r2 log n) on the length of superimposed codes [18,21,26].

3.1. Non-existential results on (p; r; d)-superimposed codes

In the previous section we have given upper bounds on the length of the shortest
(p; r; d)-superimposed codes. We now prove that (p; r; d)-superimposed codes cannot
be “too short” by providing a lower bound on their optimal length. Our lower bound
holds for the more general case when a given codeword may occur more than once
in the code. Since we will use this generalization in the next section, we will express
our lower bound directly in the case of possible multiple occurrences of codewords.
We will refer to such codes with the term of multi-codes.

De�nition 2. Let p, r and d be positive integers and let d6r. A binary multi-code
C̃= {c1; : : : ; cn}, with n¿p+r, is called (p; r; d)-superimposed if for any distinct p+r
indices h1; : : : ; hp; ‘1; : : : ; ‘r there exist r−d+1 distinct indices j1; : : : ; jr−d+1∈{‘1; : : : ; ‘r}
such that (ch1 ∨ · · · ∨ chp) is not covered by (cj1 ∨ · · · ∨ cjr−d+1). The minimal length
of a k-uniform (p; r; d)-superimposed multi-code of size n is denoted by Ñ (p; r; d; k; n)
whereas that of an arbitrary (p; r; d)-superimposed multi-code of size n is denoted
by Ñ (p; r; d; n).

Observe that a (p; r; d)-superimposed multi-code may contain at most d + p − 1
occurrences of a given codeword c. Indeed let c‘1 ; : : : ; c‘d+p be d+p identical codewords,
and let c‘d+p+1 ; : : : ; c‘r+p be any other codewords. One has that c‘1 ∪ · · · ∪ c‘p is covered
by the union of any r − d + 1 codewords belonging to {c‘p+1 ; : : : ; c‘r+p}. Hence, one
has that the following theorem holds.

Theorem 3. Let n, p, r and d be positive integers and let d6r and n¿p + r. It
results that

Ñ (p; r; d; n)6 N (p; r; d; n)6 Ñ (p; r; d; (d + p− 1)n):

234 A. De Bonis, U. Vaccaro / Theoretical Computer Science 306 (2003) 223–243

The following lemma establishes an upper bound on the size of a k-uniform (p; r; d)-
superimposed multi-code for a =xed value of the length N .

Lemma 2. Let C̃ be a k-uniform (p; r; d)-superimposed multi-code of length N . If
�r=(pd) is larger than 1 and divides k then

|C̃|6

(
N

k=�r=(pd)�

)
(

k
k=�r=(pd)�

) rp+ p− 1:

Proof. Let F be the family associated with a k-uniform (p; r; d)-superimposed multi-
code and let F ∈F. If �r=(pd) divides k then Baranyai’s theorem [3] implies that
there exists s=

(k
k=�r=(pd)�

)
=�r=(pd) ways to partition F into �r=(pd) sets of size

k=�r=(pd) so that no subset of F of size k=�r=(pd) belongs to two distinct partitions.
Let PF

1 ; : : : ;PF
s denote these s partitions of F .

Let F1; : : : ; Fp be any p sets of F. For v=1; : : : ; p, and j=1; : : : ; s, let PFv
j =

{Av
1; j ; : : : ; A

v
�r=(pd)�; j}. For each j=1; : : : ; s, there exists two integers v∈{1; : : : ; p} and

i∈{1; : : : ; �r=(pd)} such that Av
i; j is contained in at most d− 1 other members of F.

Suppose by contradiction that for any v=1; : : : ; p and i=1; : : : ; �r=(pd), there exist d
other family members Fv;1

i; j ; : : : ; Fv; d
i; j having Av

i; j as a subset. Let f= r mod (pd) and let

F̂1; : : : ; F̂f denote any f members of F distinct from Fv;1
i; j ; : : : ; Fv; d

i; j , for v=1; : : : ; p and

i=1; : : : ; �r=(pd). Let us consider the r family members F1;1
1; j ; : : : ; F1; d

1; j ; : : : ; F1;1
�r=(pd)�; j ;

: : : ; F1; d
�r=(pd)�; j ; : : : ; F

p;1
1; j ; : : : ; Fp;d

1; j ; : : : ; Fp;1
�r=(pd)�; j ; : : : ; F

p;d
�r=(pd)�; j ; F̂1; : : : ; F̂f. Since it is r −

d=d(p�r=(pd)−1)+f, then any collection of r−d+1 members of {F1;1
1; j ; : : : ; F1; d

1; j ; : : : ;

F1;1
�r=(pd)�; j ; : : : ; F

1; d
�r=(pd)�; j ; : : : ; F

p;1
1; j ; : : : ; Fp;d

1; j ; : : : ; Fp;1
�r=(pd)�; j ; : : : ; F

p;d
�r=(pd)�; j ; F̂1; : : : ; F̂f} has

a non-empty intersection with {Fv;1
i; j ; : : : ; Fv; d

i; j }, for any v=1; : : : ; p and i=1; : : : ;
�r=(pd). Consequently, the union of any such r − d + 1 sets contains F1 ∪ · · · ∪Fp,
thus contradicting the hypothesis that F is associated with a (p; r; d)-superimposed
multi-code.

It follows that for any p members F1; : : : ; Fp of F there are at least s subsets of
{1; : : : ; N} in PF1

1 ∪ · · · ∪PF1
s ∪ · · · ∪PFp

1 ∪ · · · ∪PFp
s which are contained in at most

d−1 other family members. Moreover, at least �s=p� such subsets are pairwise distinct,
since for any v=1; : : : ; p, each subset belongs to at most one of partitions PFv

1 ; : : : ;PFv
s .

Let us associate each subfamily of F of size p with �s=p� such subsets of {1; : : : ; N}
and let us consider �|F|=p pairwise disjoint subfamilies of F of size p. Then, each
of these pairwise disjoint subfamilies is associated with �s=p� subsets of {1; : : : ; N}
of size k=�r=(pd) and each of these subsets is associated with at most d − 1 of the
remaining �|F|=p − 1 subfamilies. Since these �s=p� subsets are pairwise distinct,
then it results

�|F|=p · �s=p�6 d
(

N
k

�r=(pd)�

)

from which the lemma follows.

A. De Bonis, U. Vaccaro / Theoretical Computer Science 306 (2003) 223–243 235

A lower bound on the length of non-uniform (p; r; d)-superimposed codes can be
derived from Lemma 2 by resorting to the following simple lemma.

Lemma 3. Let p, r, d and n be positive integers with d6r and n¿p + r. Then,
if there exists a (p; r; d)-superimposed multi-code of size n and length N then it is
possible to build an N -uniform (p; r; d)-superimposed multi-code of size n and length
2N .

Proof. Let C̃= {c1; : : : ; cn} be a non-uniform (p; r; d)-superimposed multi-code of size
n and length N . For j=1; : : : ; n, let c′j denote the column of length 2N having c′j(i)=
cj(i) and c′j(i+N)= 1− cj(i), for i=1; : : : ; N . The lemma follows from observing that
the multi-code C̃′ = {c′1; : : : ; c′n} is an N -uniform (p; r; d)-superimposed multi-code of
length 2N .

Next Theorem 4 is an immediate consequence of Lemmas 2, 3, inequality (13) and
of the following inequality holding for any pair of non-negative integers a and b.

(a
b

)b
6
(

a
b

)
:

Theorem 4. Let p, r and d be positive integers and let d6r and n¿p+ r. It results
that

Ñ (p; r; d; n)¿
1

1 + log2 e

⌊
r

pd

⌋
log2

n− p + 1
rp

;

where e is the base of the natural logarithm.

The following corollary follows from Theorems 3 and 4.

Corollary 2. Let p, r and d be positive integers and let d6r and n¿p+r. It results
that

N (p; r; d; n)¿
1

1 + log2 e

⌊
r

pd

⌋
log2

n− p + 1
rp

;

where e is the base of the natural logarithm.

4. E&cient algorithms for group testing with inhibitors

The classical group testing scenario consists of a set S= {s1; : : : ; sn} of items p
of which are defective (positive), while the others are good (negative). The goal
of a group testing strategy is to identify all defective items. To this aim, items of
S are pooled together for testing. A test yields a positive feedback if the tested
pool contains one or more positive members of S and a negative feedback

236 A. De Bonis, U. Vaccaro / Theoretical Computer Science 306 (2003) 223–243

otherwise. The group testing strategy is said non-adaptive if all tests are
performed in parallel whereas it is said adaptive when the tests are performed
sequentially, and which test to perform at a given step may depend on the feed-
backs of the previously executed tests. In non-adaptive strategies each test must be
decided beforehand and cannot depend on the feedbacks of previous
tests.

We brie"y describe how Kautz and Singleton superimposed codes [29] provide a
non-adaptive group testing strategy for such a scenario; this will give intuitions for our
more complicated case. The correspondence is obtained by associating the columns of
the superimposed code with items and the rows with tests. Entry (i; j) of the matrix
is 1 if sj belongs to the pool used for the ith test, and 0 otherwise. Let y denote
the column of length N with y(i)= 1, i=1; : : : ; N , if and only if the response to
the ith test is positive. This column is equal to the boolean sum of the columns
associated to the p defective items. The code provides a strategy to uniquely iden-
tify the p defectives if the boolean sums of p columns are all distinct. Codes with
this property, which is weaker than the cover-free property illustrated in Section 2,
have been considered by Kautz and Singleton as well. However, the cover-free prop-
erty allows a more e5cient detection of defective items. Indeed, the feedback col-
umn y will cover only the columns associated to the p defective items. For that
reason, it will be su5cient to inspect individually the columns associated to the n
items instead of inspecting the boolean sums associated to all distinct

(n
p

)
p-tuples of

items.

4.1. Group testing with inhibitors

In this section we consider the variation of classical group testing which has been
introduced by Farach et al. [22]. A related model was considered in [12]. In this search
model, which we call Group Testing with Inhibitors (GTI), the input set consists
not only of positive items and negative items, but also of a group of r items called
inhibitors.

A pool tests positive if and only if it contains one or more positive items and no
inhibitor. The problem is to identify the set of the positive items. Farach et al. [22]
have proved that this problem has the same asymptotic lower bound of the apparently
harder problem of identifying both the set of the positives and that of the inhibitors.
They have also described a randomized algorithm to =nd the p positives which achieve
the information theoretic bound when p + r�n. In [13] the authors improved on the
results given in [22].

4.2. The threshold model

We introduce a generalization of the GTI model presented in the previous section.
In this new model the presence of positives in a test set can be detected only if the
test set contains a number of inhibitors smaller than a =xed threshold d. Our goal is
to identify all positive items using as few tests as possible.

A. De Bonis, U. Vaccaro / Theoretical Computer Science 306 (2003) 223–243 237

4.2.1. Our algorithm
Our algorithm consists of four phases.
• Phase 1. Find a group of items Q which tests positive.
• Phase 2. Find a group of items containing exactly d− 1 inhibitors and at least one

positive item.
• Phase 3. Find r − d + 1 inhibitors and discard them.
• Phase 4. Find all positives.
In the following we will describe how to perform each of the above phases.
Phase 1: The search strategy performed during this phase is provided by a (p; r; d)-
superimposed code of size n. We associate the columns of the code with the n items
and the rows with the tests. Entry (i; j) of the matrix is 1 if sj belongs to the pool
used for the ith test, and 0 otherwise. Let y denote the feedback column, i.e., y(i)= 1,
i=1; : : : ; N , if and only if the response to the ith test is positive. Hence, one has
that y(i)= 1, i=1; : : : ; N , if and only if among the items pooled for the ith test there
are at least one positive and no more than d − 1 inhibitors. Let ch1 ; : : : ; chp be the
p codewords associated to the p defective items and let c‘1 ; : : : ; c‘r those associated
with the r inhibitors. Then, for any i=1; : : : ; N , one has that y(i)= 1 if and only
if (ch1 ∨ · · · ∨ chp)(i)= 1 and there exist r − d + 1 indices j1; : : : ; jr−d+1 ∈{‘1; : : : ; ‘r}
such that (cj1 ∨ · · · ∨ cjr−d+1)(i)= 0. Since the code is (p; r; d)-superimposed then one
has that this condition is veri=ed for at least one index i∈{1; : : : ; N}. Moreover, such
an index i exists for any choice of ch1 ; : : : ; chp and any choice of c‘1 ; : : : ; c‘r . Con-
sequently, the strategy associated with the (p; r; d)-superimposed code guarantees a
positive feedback for any choice of the p defectives and for any choice of the r
inhibitors.

Notice that the search strategy performed during this phase is completely non-
adaptive, a feature of some interest in practical applications.
Phase 2: In the following we will denote with HALFL(HALFR, resp.) a function which
takes in input a set A= {a1; : : : ; am} and returns the set consisting of the =rst �m=2
(the last �m=2�, resp.) elements of A. Let Q be the group of items returned by Phase
1. Then, Phase 2 consists of the following procedure:

A←S \ Q
B← Q
while(|A|¿ 1)
T ← B ∪ HALFL(A)
if T tests positive then B← T

A← HALFR(A)
else A← HALFL(A)

return(B)

The above procedure preserves the invariant that B contains at most d− 1 inhibitors
and B ∪ A contains at least d inhibitors. Since the algorithm terminates as soon as |A|
becomes equal to 1, then it follows that the set B returned by the procedure contains
exactly d− 1 inhibitors. Moreover, since Q⊆B, then B contains at least one positive
item.

238 A. De Bonis, U. Vaccaro / Theoretical Computer Science 306 (2003) 223–243

Phase 3: A variant of the classical group testing is used to =nd the r−d+1 inhibitors
s‘1 ; : : : ; s‘r−d+1 contained in S\B. The variant consists in adding the items in the set B
returned by Phase 2 to each tested group T . This assures a positive feedback if the
tested group T contains no inhibitor, and a negative response if the tested group T
contains at least 1 inhibitor.

Then, the r − d + 1 inhibitors s‘1 ; : : : ; s‘r−d+1 found in S\B are discarded from S.
Phase 4: S\{s‘1 ; : : : ; s‘r−d+1} is searched to =nd the p positives. Since the undiscarded
d− 1 inhibitors do not interfere with the tests, then a classical group testing algorithm
can be applied to =nd all positives.

Observe that the number of tests executed in Phase 1 is as small as N (p; r; d; n).
Phase 2 requires �log |S\Q|�6�log(n − 1)� tests since the search space reduces by
one half at each step. Phase 3, as well as Phase 4, perform a standard group test-
ing strategy. The cost of the optimal group testing strategy (see Chapter 2 of [15])
to =nd q defectives in a set of size n is O(q log(n=q)). Consequently, Phase 3 re-
quires O((r − d + 1) log(n=(r − d + 1))) tests, whereas Phase 4 requires
O(p log(n=p)) tests. Combining all the above estimates one gets the following
theorem.

Theorem 5. There exists a strategy to ;nd the p positives which uses

N (p; r; d; n) + O
(
log n + (r − d + 1) log

(
n

r − d + 1

)
+ p log

n
p

)

tests.

Plugging in the above upper bound either the expression for N (p; r; d; n) given in
Theorem 1 or that of Theorem 2 provides an explicit estimate of the cost of our
strategy. We remark that for many values of the involved parameters, the leading term
in the estimation of the number of tests required by our strategy is just N (p; r; d; n).

4.3. A lower bound on the number of tests

The introduced generalization of superimposed codes intervenes in our group testing
problem not only in establishing an upper bound on its optimal cost, but also in
determining a lower bound on it. Namely, we have the following results.

Theorem 6. Any strategy to ;nd all positives requires at least N (p; r; d; n− 1) tests.

Proof. Fix any algorithm which =nds all p positives and let T1; : : : ; Tt ; : : : be a sequence
of tested pools. For every item a∈S and t¿1; let It(a) be a binary column of length
t with It(a)(i)= 1 if a∈Ti and It(a)(i)= 0 otherwise, for i=1; : : : ; t.

Let C̃t = {It(a): a∈S}. C̃t is a binary multi-code of length t. If C̃t is not a (p; r; d)-
superimposed multi-code, then there are r + p items sh1 ; : : : ; shp ; s‘1 ; : : : ; s‘r such that
(It(sh1)∨ · · · ∨ It(shp)) is covered by (It(sj1)∨ · · · ∨ It(sjr−d+1)) for any r−d+1 indices
j1; : : : ; jr−d+1 ∈{‘1; : : : ; ‘r}. This means that if (It(sh1)∨ · · · ∨ It(shp))(i)= 1 for some
i∈{1; : : : ; t}, then there are at least d columns among It(s‘1); : : : ; It(s‘r) having the ith

A. De Bonis, U. Vaccaro / Theoretical Computer Science 306 (2003) 223–243 239

entry equal to 1. As a consequence, one has that for i=1; : : : ; t, {sh1 ; : : : ; shp}∩Ti �= ∅
only if |{s‘1 ; : : : ; s‘r} ∩ Ti|¿d. Then, an adversary could make sh1 ; : : : ; shp be the p
positives and s‘1 ; : : : ; s‘r be the r inhibitors, and force the tests on T1; : : : ; Tt to receive
negative feedbacks.

If t¡N (p; r; d; n−1), then C̃t is not a (p; r; d)-superimposed multi-code. Then, there
are r + p items sh1 ; : : : ; shp ; s‘1 ; : : : ; s‘r such that (It(sh1)∨ · · · ∨ It(shp)) is covered by
(It(sj1)∨ · · · ∨ It(sjr−d+1)) for any r−d+1 indices j1; : : : ; jr−d+1 ∈{‘1; : : : ; ‘r}. Moreover,
any C̃\{shi}, for i=1; : : : ; p, is also not a (p; r; d)-superimposed multi-code. Therefore,
there exists also an (r+p)-tuple sh′1 ; : : : ; sh′p ; s‘′1 ; : : : ; s‘′r with shi =∈{sh′1 ; : : : ; sh′p}; such that
(It(sh′1)∨ · · · ∨ It(sh′p)) is covered by (It(sj′1)∨ · · · ∨ It(sj′r−d+1

)) for any r−d+1 indices
j′1; : : : ; j

′
r−d+1 ∈{‘′1; : : : ; ‘′r}.

From the above discussion, it follows that for t¡N (p; r; d; n−1), there exist at least
two distinct p-tuples of items which could force the =rst t tests to receive negative
responses. Obviously such a sequence of t tests would not allow us to determine which
one is the p-tuple of the positive items.

Notice that the basic information theoretic lower bound implies that ((p log(n
p))

tests are required to =nd all p positives. The following result is an immediate conse-
quence of the information theoretic bound and of Theorems 4 and 6.

Theorem 7. Any strategy to ;nd all positives requires ((p log n=p + r=pd log(n −
p + 1)=rp) tests.

5. Con+ict resolution in multiple access channels

In this section we show how our codes can be used for resolving con"icts in multiple
access communication when simultaneous transmissions of up to d users on the same
channel is allowed. We =rst de=ne the mathematical model formally.

5.1. The multiaccess model

The contemplated scenario consists of a system comprising a set of n users u1; : : : ; un

and a single channel which allows up to d users to successfully transmit at the same
time. We make the following standard assumptions.
• Slotted system. We assume that the time be divided into time slots and that the

transmission of a single packet require one time slot. Simultaneous transmissions are
those occurring in the same time slot.
• Threshold con3ict. If no more than d users transmit during the same time slot then

their transmissions are successful. Collisions arise if more than d users attempt to
transmit at the same time.
• Immediate feedback. We assume that at the end of each slot, the system provides

each user with a feedback which says whether packets have been transmitted during
that slot and whether a con"ict has occurred.

240 A. De Bonis, U. Vaccaro / Theoretical Computer Science 306 (2003) 223–243

• Retransmission of con3icts. We assume that packets involved in the con"ict must
be retransmitted until they are successfully received. Users involved in the con"ict
are said backlogged.
• Bounded number of backlogged users. We assume that the number of backlogged

users does not exceed a given bound q.
• Blocked access. We assume that when a con"ict occurs only users involved in the

con"ict are allowed to transmit until the con"ict is resolved. Collision resolution
algorithms using this assumption are called blocked access algorithms and the time
employed to resolve the con"ict is called con3ict resolution period. We de=ne the
length of the con"ict resolution period as the number of time slots the con"ict
resolution period is divided into.

See [9,5] for an extensive discussion on the implications of the above assumptions.

5.2. Complexity of non-adaptive con3ict resolution

A con"ict resolution algorithm schedules users’ transmissions so that for each user
there is a time slot during which her transmission is successful. This property guarantees
that a con"ict is resolved within the con"ict resolution period.

We present a con"ict resolution algorithm for the multiaccess model described in
the previous section. In our con"ict resolution algorithm, each user uj is perma-
nently associated with a set of time slots. When a new con"ict occurs a con"ict
resolution period starts and the con"ict is resolved by having each backlogged user
transmit only during the time slots allocated to her. Algorithms like ours are to-
tally non-adaptive, in contrast to adaptive con"ict resolution protocols. The latter may
query other users to =nd out the identities of the con"icting ones and, on the basis
of this acquired knowledge, schedule the retransmissions to solve the con"ict. To-
tally non-adaptive con"ict resolution protocols have obvious advantages over adaptive
ones.

Our algorithm works as follows. Let u‘1 ; : : : ; u‘s , d¡s6q, denote the users involved
in the con"ict. Then, transmissions from users other than u‘1 ; : : : ; u‘s are blocked,
whereas, for each h∈{1; : : : ; s}, user u‘h transmits only during the time slots which
have been allocated to her. The con"ict resolution algorithm should guarantee that
for each h∈{1; : : : ; s}, there is a time slot among those associated to user u‘h during
which at most d − 1 users in {u‘1 ; : : : ; u‘s}\{u‘h} are allowed to transmit. We use a
(1; q − 1; d)-superimposed code of size n to construct the time slot subsets to be as-
sociated to the n users. To this aim, we associate each user with a distinct codeword
of the (1; q − 1; d)-superimposed code. The time slots assigned to a given user are
those corresponding to the 1-entries in the associated codeword. The length N of the
(1; q− 1; d)-superimposed code coincides with the number of time slots in the con"ict
resolution period. For any integer i∈{1; : : : ; N}, a backlogged user transmits during
the ith time slot of the con"ict resolution period if and only if the ith entry of her
codeword is equal to 1.

It is rather easy to see that, if no more than q users are involved in the con"ict,
then the above algorithm resolves the con"ict within N time slots. Let {u‘1 ; : : : ; u‘s} be
any s users involved in the con"ict, s6q. By de=nition of (1; q − 1; d)-superimposed

A. De Bonis, U. Vaccaro / Theoretical Computer Science 306 (2003) 223–243 241

code, one has that for each h∈{1; : : : ; s}, there exists an integer i∈{1; : : : ; N} such
that the codeword associated to ulh has the ith entry equal to 1, whereas at most d− 1
of the s− 1 codewords associated to users {u‘1 ; : : : ; u‘s}\{u‘h} have the ith entry equal
to 1. Consequently, for each h∈{1; : : : ; s}, there is a time slot i∈{1; : : : ; N} among
those assigned to user u‘h which has been assigned to at most other d− 1 backlogged
users. As a consequence, there is a time slot within the con"ict resolution period during
which u‘h ’s transmission is successful.

Therefore, a generalized superimposed code can be used as a tool for a totally
non-adaptive con"ict resolution algorithm in the multiple access channel previously
described. Actually, we can prove that in our scenario any totally non-adaptive con"ict
resolution algorithm corresponds to a generalized superimposed (multi)code. This will
allow us to estimate also from below the complexity of non-adaptive con"ict resolution
algorithms.

Theorem 8. In any non-adaptive con3ict resolution algorithm, the length of the
con3ict resolution period coincides with the length of a (1; q − 1; d) superimposed
multi-code of size n.

Proof. Fix any non-adaptive con"ict resolution algorithm and suppose that this algo-
rithm divide the con"ict resolution period into t slots. The con"ict resolution algorithm
allows each user uj to transmit only at given time slots within the con"ict resolution
period. For each user uj; j=1; : : : ; n, let us de=ne a binary column cuj of length t
such that cuj (i)= 1, i=1; : : : ; t, if and only if uj is allowed to transmit at time slot
i. It is rather easy to see that cu1 ; : : : ; cun form a (1; q − 1; d) multi-code of size n.
Suppose by contradiction that C̃ is not (1; q− 1; d)-superimposed. Then, there exist q
columns cuh ; cu‘1

; : : : ; cu‘q−1
such that ch is covered by (cj1 ∨ · · · ∨ cjq−d) for any q − d

indices j1; : : : ; jq−d ∈{‘1; : : : ; ‘q−1}. This means that if ch(i)= 1 for some i∈{1; : : : ; t},
then there are at least d columns among c‘1 ; : : : ; c‘q−1 having the ith entry equal to
1. As a consequence, one has that there is no time slot in the con"ict resolution
period during which the transmission of cuj is successful. Then, an adversary could
make ch; c‘1 ; : : : ; c‘q−1 be the backlogged users thus forcing ch’s transmissions to be all
unsuccessful during the con"ict resolution period.

From the above theorem one has that the length Ñ (1; q − 1; d; n) of the shortest
(1; q− 1; d)-superimposed multi-code represents exactly the minimum number of time
slots required to resolve a con"ict non-adaptively. Therefore, our explicit upper and
lower bounds on Ñ (1; q − 1; d; n) (recall that Ñ (·)6N (·)) given in Section 3 yield
explicit estimates on the goodness of the con"ict resolution protocol presented in this
section.

Acknowledgements

The authors wish to thank the anonymous referees for very useful comments and
suggestions.

242 A. De Bonis, U. Vaccaro / Theoretical Computer Science 306 (2003) 223–243

References

[1] G. Ateniese, C. Blundo, A. De Santis, D.R. Stinson, Visual cryptography for general access structures,
Inform. and Comput. 129 (2) (1996) 86–106.

[2] D.J. Balding, W.J. Bruno, E. Knill, D.C. Torney, A comparative survey of non-adaptive pooling design,
in: T.P. Speed, M.S. Waterman (Eds.), Genetic Mapping and DNA Sequencing, IMA Volumes in
Mathematics and its Applications, Springer, Berlin, 1996, pp. 133–154.

[3] Zs. Baranyai, On the factorization of the complete uniform hypergraph, in: In=nite and Finite Sets,
Proc. Coll. Math. Soc. JVanos BVolyai, Vol. 10, 1975, pp. 91–108.

[4] E. Barillot, B. Lacroix, D. Cohen, Theoretical analysis of library screening using an n-dimensional
pooling strategy, Nucleic Acids Res. (1991) 6241–6247.

[5] D. Bertsekas, R. Gallager, Data Networks, Prentice-Hall, Englewood CliQs, NJ, 1992.
[6] W.J. Bruno, D.J. Balding, E. Knill, D. Bruce, C. Whittaker, N. Dogget, R. Stalling, D.C. Torney, Design

of e5cient pooling experiments, Genomics 26 (1995) 21–30.
[7] S. Chaudhuri, J. Radhakrishnan, Deterministic restrictions in circuit complexity, in: Proc. of the 28th

Annu. ACM Symp. on the Theory of Computing (STOC 96), Philadelphia, PA, 1996, pp. 30–36.
[8] R.W. Chen, F.K. Hwang, K-de=nite group testing and its application to polling in computer networks,

Congr. Numer. 47 (1985) 145–149.
[9] B.S. Chlebus, Randomized communication in radio networks, in: P.M. Pardalos, S. Rajasekaran, J.

Reif, J.D.P. Rolim (Eds.), Handbook of Randomized Computing, Vol. I, Kluwer Academic Publishers,
Dordrecht, 2001, pp. 401–456.

[10] B. Chor, A. Fiat, M. Naor, Tracing traitors, in: Proc. of Crypto 94, Santa Barbara, CA, Lecture Notes
in Computer Science, Vol. 839, Springer, Berlin, 1994, pp. 257–270.

[11] A.E.F. Clementi, A. Monti, R. Silvestri, Selective families, superimposed codes, and broadcasting on
unknown radio networks, in: Proc of Symp. on Discrete Algorithms (SODA’01), Washington, DC,
pp. 709–718.

[12] P. Damaschke, Randomized group testing for mutually obscuring defectives, Inform. Process. Lett.
67 (3) (1998) 131–135.

[13] A. De Bonis, U. Vaccaro, Improved algorithms for group testing with inhibitors, Inform. Process. Lett.
67 (1998) 57–64.

[14] R. Dorfman, The detection of defective members of large populations, Ann. Math. Statist. 14 (1943)
436–440.

[15] D.Z. Du, F.K. Hwang, Combinatorial Group Testing and its Applications, 2nd Edition, World Scienti=c,
Singapore, 2000.

[16] A.G. Dyachkov, A.J. Macula, V.V. Rykov, New constructions of superimposed codes, IEEE Trans.
Inform. Theory 46 (1) (2000) 284–290.

[17] A.G. Dyachkov, A.J. Macula, V.V. Rykov, New applications and results of superimposed code theory
arising from the potentialities of molecular biology in: Number, Information and Complexity, Kluwer,
Dordrecht, 2000, pp. 265–282.

[18] A.G. Dyachkov, V.V. Rykov, Bounds on the length of disjunctive codes, Probl. Control Inform. Theory
11 (1982) 7–13.

[19] A.G. Dyachkov, V.V. Rykov, A survey of superimposed code theory, Probl. Control Inform. Theory
12 (4) (1983) 1–13.

[20] M. Dyer, T. Fenner, A. Frieze, A. Thomason, On key storage in secure networks, J. Cryptology
8 (1995) 189–200.

[21] P. ErdWos, P. Frankl, Z. FWuredi, Families of =nite sets in which no set is covered by the union of r
others, Israel J. Math. 51 (1985) 75–89.

[22] M. Farach, S. Kannan, E.H. Knill, S. Muthukrishnan, Group testing with sequences in experimental
molecular biology, in: B. Carpentieri, A. De Santis, U. Vaccaro, J. Storer (Eds.), Proc. Compression
and Complexity of Sequences 1997, IEEE Computer Society, Silver Spring, MD, 1997, pp. 357–367.

[23] Z. FWuredi, On r-cover-free families, J. Combin. Theory Ser. A 73 (1996) 172–173.
[24] Hung Q. Ngo, Ding-Zhu Du, A survey on combinatorial group testing algorithms with applications to

DNA library screening, in: Discrete Mathematical Problems with Medical Applications, DIMACS Ser.

A. De Bonis, U. Vaccaro / Theoretical Computer Science 306 (2003) 223–243 243

Discrete Math. Theoret. Comput. Sci., Vol. 55, American Mathematical Society, Providence, RI, 2000,
pp. 171–182.

[25] F.K. Hwang, A tale of two coins, Amer. Math. Monthly 94 (1987) 121–129.
[26] F.K. Hwang, V.T. SWos, Non adaptive hypergeometric group testing, Studia Sc. Math. Hungarica

22 (1987) 257–263.
[27] P. Indyk, Deterministic superimposed coding with application to pattern matching, Proc. Foundations

of Computer Science (FOCS 97), IEEE Press, Miami, FL, 1997, pp. 127–136.
[28] G.O.H. Katona, T.G. TarjYan, Extremal problems with excluded subgraphs in the n-cube, Graph Theory,

Lagow, Poland, Lecture Notes in Mathematics, Vol. 1018, Springer, Berlin, 1983, pp. 84–93.
[29] W.H. Kautz, R.R. Singleton, Nonrandom binary superimposed codes, IEEE Trans. Inform. Theory 10

(1964) 363–377.
[30] J. KomlYos, A.G. Greenberg, An asymptotically fast non-adaptive algorithm for con"ict resolution in

multiple-access channels, IEEE Trans. Inform. Theory 31 (2) (1985) 302–306.
[31] R. Kumar, S. Rajagopalan, A. Sahai, Coding constructions for blacklisting problems without

computational assumptions, in: Proc. of CRYPTO ’99, Santa Barbara, CA, Lecture Notes in Computer
Science, Vol. 1666, Springer, Berlin, 1999, pp. 609–623.

[32] N. Linial, Locality in distributed graph algorithms, SIAM J. Comput. 21 (1992) 193–201.
[33] A.J. Macula, A simple construction of d-disjunct matrices with certain constant weights, Discrete Math.

162 (1996) 311–312.
[34] A.J. Macula, Error-correcting nonadaptive group testing with de-disjunct matrices, Discrete Appl. Math.

80 (1997) 217–222.
[35] D. Margaritis, S. Skiena, Reconstructing strings from substrings in rounds, Proc. of Foundations of

Computer Science (FOCS 95), Milwaukee, WI, pp. 613–620.
[36] F. Meyer auf der Heide, C. Scheideler, V. Stemann, Exploiting storage redundancy to speed up

randomized shared memory simulations, Proc. of the 12th Internat. Symp. on Theoretical Aspects of
Computer Science (STACS 95), pp. 267–278.

[37] C.J. Mitchel, F.C. Piper, Key storage in secure networks, Discrete Appl. Math. 21 (1988) 215–228.
[38] R. Motwani, P. Raghavan, Randomized Algorithms, Cambridge University Press, Cambridge, 1995.
[39] P.A. Pevzner, R. Lipshutz, Towards DNA sequencing chips, in: Proc. of the 19th Conference on

Mathematical Foundations of Computer Science, Kosice, Slovakia, Lectures Notes in Computer Science,
Vol. 841, Springer, Berlin, 1994, pp. 143–158.

[40] M. RuszinkYo, On the upper bound of the size of the r-cover-free families, J. Combin. Theory Ser. A
66 (1994) 302–310.

[41] Yu.L. Sagalovich, Separating systems, Probl. Inform. Transmission 30 (2) (1994) 105–123.
[42] D.R. Stinson, Tran van Trung, R. Wei, Secure frameproof codes, key distribution patterns, group testing

algorithms and related structures, J. Statist. Plann. Inference 86 (2000) 595–617.
[43] B.S. Tsybakov, V.A. Mikhailov, N.B. Likhanov, Bounds for packet transmissions rate in a

random-multiple-access system, Probl. Inform. Transmission 19 (1983) 61–81.
[44] Hong-Gwa Yeh, d-Disjunct matrices: bounds and LovYasz Local Lemma, Discrete Math. 253 (2002)

97–107.

	Constructions of generalized superimposed codes with applications to group testing and conflict resolution in multiple access channels
	Introduction
	Combinatorial group testing
	Conflict resolution in multiple access channels
	Structure of the paper and summary of results

	Basic definitions
	Bounds on the length of (p,r,d)-superimposed codes
	Non-existential results on (p,r,d)-superimposed codes

	Efficient algorithms for group testing with inhibitors
	Group testing with inhibitors
	The threshold model
	Our algorithm

	A lower bound on the number of tests

	Conflict resolution in multiple access channels
	The multiaccess model
	Complexity of non-adaptive conflict resolution

	Acknowledgements
	References

