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Cover-Free Families and Superimposed Codes: Constructions,
Bounds, and Applications to Cryptography and Group Testing

Arkadii D’yachkov Vladimir Lebedev Pavel Vilenkin Sergei Yekhanin

Abstract — This paper deals with (s, `)-cover-free
families or superimposed (s, `)-codes. They generalize
the concept of superimposed s-codes and have sev-
eral applications for cryptography and group testing.
We present a new asymptotic bound on the rate of
optimal codes and develop some constructions.

I. Definitions

Let X = ‖xi(j)‖ be a binary matrix with N rows and t
columns, i = 1, . . . , N , j = 1, . . . , t. We consider X as a
binary code of length N and size t with columns as codewords.
Let s and ` be positive integers, s + ` ≤ t. A matrix X is
called a superimposed (s, `)-code if for any two sets of columns
S,L ⊂ [t] = {1, 2, . . . , t} such that |S| = s, |L| = `, and
S ∩ L = ∅, there exists a row i ∈ [N ] such that xi(j) = 1 for
all j ∈ L and xi(j

′) = 0 for all j′ ∈ S.
For the special case ` = 1 superimposed codes were intro-

duced in [1] and studied in many papers [2, 4, 8, 9, 13]. Su-
perimposed (s, `)-codes are the natural generalization of this
concept which is closely connected with cover-free families.

Superimposed codes have several applications: the problem
of nonadaptive search for positive supersets [9, 10, 12, 13], the
problem of key storage in secure networks [3, 6, 12, 13], ets.

Denote by N(t, s, `) the smallest length of a superimposed
(s, `)-code having size t. Let R(s, `) be the rate function of
these codes, i.e., R(s, `) = lim sup

t→∞
(log2 t)/N(t, s, `).

II. Asymptotic Bounds on R(s, `)

Theorem 1 [10, 13]. If s → ∞ and ` = const then the
following asymptotic inequalities hold

``e−` log2 e

s`+1
(1 + ō(1)) ≤ R(s, `) ≤ (`+ 1)! log2 s

s`+1
(1 + ō(1)).

For the case ` = 1, these bounds coincide with the best
known bounds which can be found in [2, 4]. Some upper
bounds are also proved in [6, 7, 11]. Some of them are non-
asymptotic, i.e., true for all values of s and `. In [7] one can
find an upper bound that is better then our bound when s ≈ `.
In [11] one can find a non-asymptotic upper bound in a simple
form. The asymptotic form of this bound looks like our bound
but contains 2` · `! instead of (`+ 1)!.

III. Constructions of Superimposed (s, `)-codes

A simple construction of superimposed codes is based on
concatenated codes. It was considered in [5, 8, 9, 10, 13]. To
apply it, we need large q-ary separating codes [5, 10, 13] and
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small (having size q) binary superimposed codes. Some q-ary
separating codes can be obtained from MDS-codes [5, 10, 13].
Using Reed-Solomon codes we can obtain the following con-
structive result which is formulated in terms of upper bound
on N(t, s, `).

Theorem [5, 10, 13]. Let s, `, and λ be positive inte-
gers and q ≥ s`λ be a prime power. Then N(qλ+1, s, `) ≤
N(q, s, `)[s`λ+ 1].

Finally, we need to have a number of small (having size
q) superimposed codes. For the special case s = ` = 2 the
table of such codes can be found in [5]. In [10, 13] and the
present work we improve this table. Our method is based on
the difference sets and cyclic constructions.
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