HW11 Problem Set

CS-3020

Assignment
Deitel & Deitel Exercises 19.6, 19.7, 20.12

HW11-1: (Deitel & Deitel Exercise 19.6)

19.6 (Evaluating Expressions with a Stack) Stacks are used by compilers to evaluate expressions
and generate machine-language code. In this and the next exercise, we investigate how compilers
evaluate arithmetic expressions consisting only of constants, operators and parentheses.

Humans generally write expressions like 3 + 4 and 7 / 9, in which the operator (+ or / here) is
written between its operands—this is called #nfix notation. Computers “prefer” postfix notation, in
which the operator is written to the right of its two operands. The preceding infix expressions
would appear in postfix notation as 3 4 + and 7 9 /, respectively.

To evaluate a complex infix expression, a compiler would first convert the expression to post-
fix notation, then evaluate the postfix version of the expression. Each of these algorithms requires
only a single left-to-right pass of the expression. Each algorithm uses a stack object in support of its
operation, and in each algorithm the stack is used for a different purpose. Here, you'll implement
the infix-to-postfix conversion algorithm. In the next exercise, you'll implement the postfix-expres-
sion evaluation algorithm,

Write class InfixToPostfixConverter to convert an ordinary infix arithmetic expression
(assume a valid expression is entered), with single-digit integers, such as

(6 +2) *5-8/4
to a postfix expression. The postfix version of the preceding infix expression is

62+5*84/-
The program should read the expression into StringBuilder infix, then use class StackInheri-
tance (implemented in Fig. 19.13) to help create the postfix expression in StringBuilder postfix.
The algorithm for creating a postfix expression is as follows:

a) Push a left parenthesis ' (" on the stack.

b) Append a right parenthesis ') to the end of infix.

c) While the stack is not empty, read infix from left to right and do the following:

If the current character in infix is a digit, append it to postfix.
If the current character in infix is a left parenthesis, push it onto the stack.
If the current character in infix is an operator:

Pop operators (if there are any) at the top of the stack while they have equal
or higher precedence than the current operator, and append the popped
operators to postfix.

Push the current character in infix onto the stack.

If the current character in infix is a right parenthesis:

Pop operators from the top of the stack and append them to postfix until
a left parenthesis is at the top of the stack.

Pop (and discard) the left parenthesis from the stack.

The following arithmetic operations are allowed in an expression:
+ addition
- subtraction
multiplication
division
exponentiation
modulus
Some of the methods you may want to provide in your program follow:

a) Method ConvertToPostfix, which converts the infix expression to postfix notation.

b) Method IsOperator, which determines whether c is an operator.

c) Method Precedence, which determines whether the precedence of operatorl (from the
infix expression) is less than, equal to or greater than the precedence of operator2 (from
the stack). The method returns true if operatorl has lower precedence than or equal
precedence to operator2. Otherwise, false is returned.

*

¥ o>~

HW11 Problem Set

CS-3020

I // Fig. 19.13: StackInheritancelLibrary.cs

2 // Implementing a stack by inheriting from class List.
3 using LinkedListLibrary;

4

5 namespace StackInheritanceLibrary

6 {

7 // class StackInheritance inherits class List's capabilities
8 public class StackInheritance : List

9 {

10 // pass name “"stack" to List constructor

I public StackInheritance()

12 : base("stack")

3 {

14 } // end constructor

I5

Fig. 19.13 | Implementing a stack by inheriting from class List. (Part | of 2.)

16 // place datavalue at top of stack by inserting
17 // datavalue at front of linked 1ist

I8 public void Push(object dataValue)

19 {

20 InsertAtFront(dataValue);

21 } // end method Push

22

23 // remove item from top of stack by removing
24 // item at front of linked Tist

25 public object Pop()

26 {

27 return RemoveFromFront();

28 } // end method Pop

29 } // end class StackInheritance

30 } // end namespace StackInheritanceLibrary

Fig. 19.13 | Implementing a stack by inheriting from class List. (Part 2 of 2.)

HW11 Problem Set

CS-3020

HW11-2: (Deitel & Deitel Exercise 19.7)

19.7 (Evaluating a Postfix Expression with a Stack) Write class PostfixEvaluator, which eval-
uates a postfix expression (assume it is valid) such as

62+5*84/ -

The program should read a postfix expression consisting of digits and operators into a String-
Builder. Using the stack class from Exercise 19.6, the program should scan the expression and
evaluate it. The algorithm (for single-digit numbers) is as follows:
a) Append a right parenthesis ') to the end of the postfix expression. When the right-
parenthesis character is encountered, no further processing is necessary.
b) When the right-parenthesis character has not been encountered, read the expression
from left to right.
If the current character is a digit, do the following:
Push its integer value on the stack (the integer value of a digit character is its
value in the computer’s character set minus the value of '0' in Unicode).
Otherwise, if the current character is an operator:
Pop the two top elements of the stack into variables x and y.
Calculate y operator x.
Push the result of the calculation onto the stack.
c) When the right parenthesis is encountered in the expression, pop the top value of the
stack. This is the result of the postfix expression.
[Note: In Part b above (based on the sample expression at the beginning of this exercise), if the
operator is '/*, the top of the stack is 4 and the next element in the stack is 8, then pop 4 into x,
pop 8 into y, evaluate 8 / 4 and push the result, 2, back on the stack. This note also applies to oper-

ator '-".] The arithmetic operations allowed in an expression are:
+ addition
- subtraction
* multiplication
/ division
A exponentiation
% modulus

You may want to provide the following methods:
a) Method EvaluatePostfixExpression, which evaluates the postfix expression.
b) Method Calculate, which evaluates the expression opl operator op2.

HW11 Problem Set

CS-3020

HW11-3: (Deitel & Deitel Exercise 20.12)

20.12 (Generic Classes TreeNode and Tree) Convert classes TreeNode and Tree from Fig. 19.20
into generic classes. To insert an object in a Tree, the object must be compared to the objects in
existing TreeNodes. For this reason, classes TreeNode and Tree should specify IComparable<T> as the
interface constraint of each class’s type parameter. After modifying classes TreeNode and Tree, write
a test app that creates three Tree objects—one that stores ints, one that stores doubles and one that
stores strings. Insert 10 values into each tree. Then output the preorder, inorder and postorder tra-

versals for each Tree.

Grading Rubric
Each problem is worth 10 pts (score will be recorded as a percentage of that amount)

10% Properly submitted

10% Properly named

20% Adequate comments

10% Runs

20% Produces correct output

30% Effort evidenced by the submitted work

