QUIZ \#04

CSCI-410 Spring 2013

1. (12pts) Consider the Hack assembly instruction D-M. Show, mathematically, how the ALU configuration that is used to execute this instruction works. HINT: Remember the relationships between bitwise inversion and the 1's complement, and 2's complement representations of signed integers.

The control signals are $a=1, c 1 . . c 6=010011$
This means that the output is: ! (! $\mathrm{x}+\mathrm{y}$)
$x=D$ (always) and $a=1$ means $y=M$, hence we have ! (! $D+M$)
In 2's complement, $-z=!z+1$, hence $!z=-z-1=-(z+1)$ Therefore:

$$
\begin{aligned}
\text { output } & =!(!D+M)=!(-(D+1)+M)=!(M-D-1) \\
& =-(M-D-1+1)=-(M-D) \\
& =D-M
\end{aligned}
$$

2. (24pts) For each possible bitwise-AND combination of D and M obtainable by selectively inverted inputs and outputs, determine the equivalent bitwise-OR operation, the ALU control signals, and the X-instruction (see extra credit description on ECS 06). The two that are supported by the "official" instruction set are done for you.

AND op	OR op	a	c1	c2	c3	c4	c5	c6	Xnn	
D \& M	! ($\mathrm{D} \\|$! M)	1	0	0	0	0	0	0	X40	
D \& ! M	! (! \\| M)	1	0	0	0	1	0	0	X44	
! D \& M	! (D \| ! M)	1	0	1	0	0	0	0	X50	
!D \& !M	! (D \| M)	1	0	1	0	1	0	0	X54	
! (D \& M)	! D \| ! M	1	0	0	0	0	0	1	X41	
!(D \& ! M)	! $\mathrm{D}_{\text {\| M }}$	1	0	0	0	1	0	1	X45	
! (D \& M)	D \| ! M	1	0	1	0	0	0	1	X51	
! (D \& ! M)	D \\| M	1	0	1	0	1	0	1	X55	

3. (4pts) What is the difference in the X -instruction for a particular operation using the contents of memory and the same operation using the contents of the A register? In other words, given an X-instruction that performs an operation using MEM [A], what modification would you need to do so that it used \mathbf{A} instead?

You need to clear the a bit, which is b6.
This can be done by subtracting 0×40.

