EENG382 HW08 - AUTHOR’S SOLUTIONS

NOTE: I have not yet verified that the author's solutions are, in fact, correct.

Prob 15.14

P $15.14 H(s)=\frac{(R / L) s}{s^{2}+(R / L) s+(1 / L C)}=\frac{\beta s}{s^{2}+\beta s+\omega_{o}^{2}}$
For the prototype circuit $\omega_{o}=1$ and $\beta=\omega_{o} / Q=1 / Q$.
For the scaled circuit
$H^{\prime}(s)=\frac{\left(R^{\prime} / L^{\prime}\right) s}{s^{2}+\left(R^{\prime} / L^{\prime}\right) s+\left(1 / L^{\prime} C^{\prime}\right)}$
where $R^{\prime}=k_{m} R ; L^{\prime}=\frac{k_{m}}{k_{f}} L$; and $C^{\prime}=\frac{C}{k_{f} k_{m}}$
$\therefore \frac{R^{\prime}}{L^{\prime}}=\frac{k_{m} R}{\frac{k_{m}}{k_{f}} L}=k_{f}\left(\frac{R}{L}\right)=k_{f} \beta$
$\frac{1}{L^{\prime} C^{\prime}}=\frac{k_{f} k_{m}}{\frac{k_{m}}{k_{f}} L C}=\frac{k_{f}^{2}}{L C}=k_{f}^{2}$
$Q^{\prime}=\frac{\omega_{o}^{\prime}}{\beta^{\prime}}=\frac{k_{f} \omega_{o}}{k_{f} \beta}=Q$
therefore the Q of the scaled circuit is the same as the Q of the unscaled circuit. Also note $\beta^{\prime}=k_{f} \beta$.

$$
\begin{aligned}
& \therefore H^{\prime}(s)=\frac{\left(\frac{k_{f}}{Q}\right) s}{s^{2}+\left(\frac{k_{f}}{Q}\right) s+k_{f}^{2}} \\
& H^{\prime}(s)=\frac{\left(\frac{1}{Q}\right)\left(\frac{s}{k_{f}}\right)}{\left[\left(\frac{s}{k_{f}}\right)^{2}+\frac{1}{Q}\left(\frac{s}{k_{f}}\right)+1\right]}
\end{aligned}
$$

Prob 15.45

P 15.45 From Eq 15.56 we can write

$$
H(s)=\frac{-\left(\frac{2}{R_{3} C}\right)\left(\frac{R_{3} C}{2}\right)\left(\frac{1}{R_{1} C}\right) s}{s^{2}+\frac{2}{R_{3} C} s+\frac{R_{1}+R_{2}}{R_{1} R_{2} R_{3} C^{2}}}
$$

or

$$
H(s)=\frac{-\left(\frac{R_{3}}{2 R_{1}}\right)\left(\frac{2}{R_{3} C} s\right)}{s^{2}+\frac{2}{R_{3} C} s+\frac{R_{1}+R_{2}}{R_{1} R_{2} R_{3} C^{2}}}
$$

Therefore

$$
\begin{aligned}
& \frac{2}{R_{3} C}=\beta=\frac{\omega_{o}}{Q} ; \quad \frac{R_{1}+R_{2}}{R_{1} R_{2} R_{3} C^{2}}=\omega_{o}^{2} \\
& \text { and } K=\frac{R_{3}}{2 R_{1}}
\end{aligned}
$$

By hypothesis $C=1 \mathrm{~F}$ and $\omega_{o}=1 \mathrm{rad} / \mathrm{s}$
$\therefore \frac{2}{R_{3}}=\frac{1}{Q}$ or $R_{3}=2 Q$

$$
R_{1}=\frac{R_{3}}{2 K}=\frac{Q}{K}
$$

$$
\frac{R_{1}+R_{2}}{R_{1} R_{2} R_{3}}=1
$$

$$
\frac{Q}{K}+R_{2}=\left(\frac{Q}{K}\right)(2 Q) R_{2}
$$

$$
\therefore \quad R_{2}=\frac{Q}{2 Q^{2}-K}
$$

Prob 15.50

P 15.50 [a] At very low frequencies the two capacitor branches are open and because the op amp is ideal the current in R_{3} is zero. Therefore at low frequencies the circuit behaves as an inverting amplifier with a gain of R_{2} / R_{1}. At very high frequencies the capacitor branches are short circuits and hence the output voltage is zero.
[b] Let the node where R_{1}, R_{2}, R_{3}, and C_{2} join be denoted as a, then

$$
\begin{aligned}
& \left(V_{a}-V_{i}\right) G_{1}+V_{a} s C_{2}+\left(V_{a}-V_{o}\right) G_{2}+V_{a} G_{3}=0 \\
& -V_{a} G_{3}-V_{o} s C_{1}=0
\end{aligned}
$$

or

$$
\begin{gathered}
\left(G_{1}+G_{2}+G_{3}+s C_{2}\right) V_{a}-G_{2} V_{o}=G_{1} V_{i} \\
V_{a}=\frac{-s C_{1}}{G_{3}} V_{o}
\end{gathered}
$$

Solving for V_{o} / V_{i} yields

$$
\begin{aligned}
H(s) & =\frac{-G_{1} G_{3}}{\left(G_{1}+G_{2}+G_{3}+s C_{2}\right) s C_{1}+G_{2} G_{3}} \\
& =\frac{-G_{1} G_{3}}{s^{2} C_{1} C_{2}+\left(G_{1}+G_{2}+G_{3}\right) C_{1} s+G_{2} G_{3}} \\
& =\frac{-G_{1} G_{3} / C_{1} C_{2}}{s^{2}+\left[\frac{\left(G_{1}+G_{2}+G_{3}\right)}{C_{2}}\right] s+\frac{G_{2} G_{3}}{C_{1} C_{2}}} \\
& =\frac{-\frac{G_{1} G_{2} G_{3}}{G_{2} C_{1} C_{2}}}{s^{2}+\left[\frac{\left(G_{1}+G_{2}+G_{3}\right)}{C_{2}}\right] s+\frac{G_{2} G_{3}}{C_{1} C_{2}}} \\
& =\frac{-K b_{o}}{s^{2}+b_{1} s+b_{o}}
\end{aligned}
$$

where $K=\frac{G_{1}}{G_{2}} ; \quad b_{o}=\frac{G_{2} G_{3}}{C_{1} C_{2}}$
and $b_{1}=\frac{G_{1}+G_{2}+G_{3}}{C_{2}}$

Prob 15.50 (Cont'd)

[c] Rearranging we see that

$$
\begin{aligned}
& G_{1}=K G_{2} \\
& G_{3}=\frac{b_{o} C_{1} C_{2}}{G_{2}}=\frac{b_{o} C_{1}}{G_{2}}
\end{aligned}
$$

since by hypothesis $C_{2}=1 \mathrm{~F}$

$$
b_{1}=\frac{G_{1}+G_{2}+G_{3}}{C_{2}}=G_{1}+G_{2}+G_{3}
$$

$\therefore b_{1}=K G_{2}+G_{2}+\frac{b_{o} C_{1}}{G_{2}}$

$$
b_{1}=G_{2}(1+K)+\frac{b_{o} C_{1}}{G_{2}}
$$

Solving this quadratic equation for G_{2} we get

$$
\begin{aligned}
G_{2} & =\frac{b_{1}}{2(1+K)} \pm \sqrt{\frac{b_{1}^{2}-b_{o} C_{1} 4(1+K)}{4(1+K)^{2}}} \\
& =\frac{b_{1} \pm \sqrt{b_{1}^{2}-4 b_{o}(1+K) C_{1}}}{2(1+K)}
\end{aligned}
$$

For G_{2} to be realizable

$$
C_{1}<\frac{b_{1}^{2}}{4 b_{o}(1+K)}
$$

[d] 1. Select $C_{2}=1 \mathrm{~F}$
2. Select C_{1} such that $C_{1}<\frac{b_{1}^{2}}{4 b_{o}(1+K)}$
3. Calculate $G_{2}\left(R_{2}\right)$
4. Calculate $G_{1}\left(R_{1}\right) ; G_{1}=K G_{2}$
5. Calculate $G_{3}\left(R_{3}\right) ; G_{3}=b_{o} C_{1} / G_{2}$

