EENG382 HWO4 - AUTHOR’S SOLUTIONS

NOTE: I have not yet verified that the author's solutions are, in fact, correct.

Prob 12.39

P $12.39[\mathbf{a}] I_{1}(s)=\frac{K_{1}}{s}+\frac{K_{2}}{s+4}+\frac{K_{3}}{s+24}$

$$
\begin{aligned}
& K_{1}=\frac{(60)(8)}{(4)(24)}=5 ; \quad K_{2}=\frac{(60)(4)}{(-4)(20)}=-3 \\
& K_{3}=\frac{(60)(-16)}{(-24)(-20)}=-2 \\
& I_{1}(s)=\left(\frac{5}{s}-\frac{3}{s+4}-\frac{2}{s+24}\right) \\
& i_{1}(t)=\left(5-3 e^{-4 t}-2 e^{-24 t}\right) u(t) \mathrm{A} \\
& I_{2}(s)=\frac{K_{1}}{s+4}+\frac{K_{2}}{s+24} \\
& K_{1}=\frac{-60}{20}=-3 ; \quad K_{2}=\frac{-60}{-20}=3 \\
& I_{2}(s)=\left(\frac{-3}{s+4}+\frac{3}{s+24}\right) \\
& i_{2}(t)=\left(3 e^{-24 t}-3 e^{-4 t}\right) u(t) \mathrm{A}
\end{aligned}
$$

$[\mathrm{b}] i_{1}(\infty)=5 \mathrm{~A} ; \quad i_{2}(\infty)=0 \mathrm{~A}$
[c] Yes, at $t=\infty$

$$
i_{1}=\frac{300}{60}=5 \mathrm{~A}
$$

Since i_{1} is a dc current at $t=\infty$ there is no voltage induced in the 10 H inductor; hence, $i_{2}=0$. Also note that $i_{1}(0)=0$ and $i_{2}(0)=0$. Thus our solutions satisfy the condition of no initial energy stored in the circuit.

Prob 12.42

P 12.42 [a]

$$
\begin{aligned}
& F(s)=\frac{5}{s^{2}+6 s+8} \begin{array}{r}
\frac{5 s^{2}+38 s+80}{5 s^{2}+30 s+40} \\
8 s+40
\end{array} \\
& F(s)=5+\frac{8 s+40}{s^{2}+6 s+8}=10+\frac{K_{1}}{s+2}+\frac{K_{2}}{s+4} \\
& K_{1}=\left.\frac{8 s+40}{s+4}\right|_{s=-2}=12 \\
& K_{2}=\left.\frac{8 s+40}{s+2}\right|_{s=-4}=-4 \\
& f(t)=5 \delta(t)+\left[12 e^{-2 t}-4 e^{-4 t}\right] u(t)
\end{aligned}
$$

[b]
10

$$
F(s)=\begin{aligned}
& s^{2}+48 s+625 \\
& \frac{10 s^{2}+512 s+7186}{10 s^{2}+480 s+6250}
\end{aligned}
$$

$$
F(s)=10+\frac{32 s+936}{s^{2}+48 s+625}=10+\frac{K_{1}}{s+24-j 7}+\frac{K_{2}^{*}}{s+24+j 7}
$$

$$
K_{1}=\left.\frac{32 s+936}{s+24+j 7}\right|_{s=-24+j 7}=16-j 12=20 /-36.87^{\circ}
$$

$$
f(t)=10 \delta(t)+\left[40 e^{-24 t} \cos \left(7 t-36.87^{\circ}\right)\right] u(t)
$$

[c]

$$
F(s)=\begin{array}{r}
s-10 \\
\cline { 2 - 3 } \begin{array}{r}
s^{2}+15 s+50 \\
\frac{s^{3}+15 s^{2}+50 s}{-10 s^{2}-100 s-100} \\
\frac{-10 s^{2}-150 s-500}{50 s+400}
\end{array}
\end{array}
$$

$$
\begin{aligned}
& F(s)=s-10+\frac{K_{1}}{s+5}+\frac{K_{2}}{s+10} \\
& K_{1}=\left.\frac{50 s+400}{s+10}\right|_{s=-5}=30 \\
& K_{2}=\left.\frac{50 s+400}{s+5}\right|_{s=-10}=20 \\
& f(t)=\delta^{\prime}(t)-10 \delta(t)+\left[30 e^{-5 t}+20 e^{-10 t}\right] u(t)
\end{aligned}
$$

Prob 12.43

P 12.43 [a] $F(s)=\frac{K_{1}}{s^{2}}+\frac{K_{2}}{s}+\frac{K_{3}}{s+1-j 2}+\frac{K_{3}^{*}}{s+1+j 2}$

$$
K_{1}=\left.\frac{100(s+1)}{s^{2}+2 s+5}\right|_{s=0}=20
$$

$$
K_{2}=\frac{d}{d s}\left[\frac{100(s+1)}{s^{2}+2 s+5}\right]=\left[\frac{100}{s^{2}+2 s+5}-\frac{100(s+1)(2 s+2)}{\left(s^{2}+2 s+5\right)^{2}}\right]_{s=0}
$$

$$
=20-8=12
$$

$$
K_{3}=\left.\frac{100(s+1)}{s^{2}(s+1+j 2)}\right|_{s=-1+j 2}=-6+j 8=10 / 126.87^{\circ}
$$

$$
f(t)=\left[20 t+12+20 e^{-t} \cos \left(2 t+126.87^{\circ}\right)\right] u(t)
$$

[b] $F(s)=\frac{K_{1}}{s}+\frac{K_{2}}{(s+5)^{3}}+\frac{K_{3}}{(s+5)^{2}}+\frac{K_{4}}{s+5}$

$$
\begin{aligned}
& K_{1}=\left.\frac{500}{(s+5)^{3}}\right|_{s=0}=4 \\
& K_{2}=\left.\frac{500}{s}\right|_{s=-5}=-100
\end{aligned}
$$

$$
K_{3}=\frac{d}{d s}\left[\frac{500}{s}\right]=\left.\frac{-500}{s^{2}}\right|_{s=-5}=-20
$$

$$
K_{4}=\frac{1}{2} \frac{d}{d s}\left[\frac{-500}{s^{2}}\right]=\left.\frac{1}{2} \frac{1000}{s^{3}}\right|_{s=-5}=-4
$$

$$
f(t)=\left[4-50 t^{2} e^{-5 t}-20 t e^{-5 t}-4 e^{-5 t}\right] u(t)
$$

[c] $F(s)=\frac{K_{1}}{s}+\frac{K_{2}}{(s+1)^{3}}+\frac{K_{3}}{(s+1)^{2}}+\frac{K_{4}}{s+1}$

$$
K_{1}=\left.\frac{40(s+2)}{(s+1)^{3}}\right|_{s=0}=80
$$

$$
K_{2}=\left.\frac{40(s+2)}{s}\right|_{s=-1}=-40
$$

$$
K_{3}=\frac{d}{d s}\left[\frac{40(s+2)}{s}\right]=\left[\frac{40}{s}-\frac{40(s+2)}{s^{2}}\right]_{s=-1}=-40-40=-80
$$

$$
K_{4}=\frac{1}{2} \frac{d}{d s}\left[\frac{40}{s}-\frac{40(s+2)}{s^{2}}\right]
$$

$$
=\frac{1}{2}\left[\frac{-40}{s^{2}}-\frac{40}{s^{2}}+\frac{80(s+2)}{s^{3}}\right]_{s=-1}=\frac{1}{2}(-40-40-80)=-80
$$

$$
f(t)=\left[80-20 t^{2} e^{-t}-80 t e^{-t}-80 e^{-t}\right] u(t)
$$

Prob 12.43 (Cont'd)

[d] $F(s)=\frac{K_{1}}{s}+\frac{K_{2}}{(s+1)^{4}}+\frac{K_{3}}{(s+1)^{3}}+\frac{K_{4}}{(s+1)^{2}}+\frac{K_{5}}{s+1}$

$$
K_{1}=\left.\frac{(s+5)^{2}}{(s+1)^{4}}\right|_{s=0}=25
$$

$$
K_{2}=\left.\frac{(s+5)^{2}}{s}\right|_{s=-1}=-16
$$

$$
K_{3}=\frac{d}{d s}\left[\frac{(s+5)^{2}}{s}\right]=\left[\frac{2(s+5)}{s}-\frac{(s+5)^{2}}{s^{2}}\right]_{s=-1}
$$

$$
=-8-16=-24
$$

$$
K_{4}=\frac{1}{2} \frac{d}{d s}\left[\frac{2(s+5)}{s}-\frac{(s+5)^{2}}{s^{2}}\right]
$$

$$
=\frac{1}{2}\left[\frac{2}{s}-\frac{2(s+5)}{s^{2}}-\frac{2(s+5)}{s^{2}}+\frac{3(s+5)^{2}}{s^{3}}\right]_{s=-1}
$$

$$
=\frac{1}{2}(-2-8-8-32)=-25
$$

$$
K_{5}=\frac{1}{6} \frac{d}{d s}\left[\frac{2}{s}-\frac{2(s+5)}{s^{2}}-\frac{2(s+5)}{s^{2}}+\frac{3(s+5)^{2}}{s^{3}}\right]
$$

$$
=\frac{1}{6}\left[\frac{-2}{s^{2}}-\frac{2}{s^{2}}+\frac{4(s+5)}{s^{3}}-\frac{2}{s^{2}}+\frac{4(s+5)}{s^{3}}+\frac{4(s+5)}{s^{3}}-\frac{6(s+5)^{2}}{s^{4}}\right]_{s=-1}
$$

$$
=\frac{1}{6}(-2-2-16-2-16-16-96)=-25
$$

$$
f(t)=\left[25-(8 / 3) t^{3} e^{-t}-12 t^{2} e^{-t}-25 t e^{-t}-25 e^{-t}\right] u(t)
$$

