Problem #1 (12 pts)

- **10.15** a) Find the rms value of the periodic voltage shown in Fig. P10.15.
 - b) If this voltage is applied to the terminals of a 4Ω resistor, what is the average power dissipated in the resistor?

Figure P10.15

Problem #2 (16 pts)

A balanced Y-connected load having an impedance of (80+j60) Ω/ϕ is connected to a Δ -connected source in which each generator is producing 10kV (rms).

- a) What is the apparent power produced by the generator set?
- b) What is the real power consumed by the load?
- c) What is the complex power produced by the generator set?
- b) What is the power factor of the load?

Problem #3 (12 pts)

10.44 a) Determine the load impedance for the circuit shown in Fig. P10.44 that will result in maximum average power being transferred to the load if $\omega = 5 \text{ krad/s.}$

Figure P10.44

EENG382 EXAM #1

NAME_____

Problem #4 (10 pts)

Find the one-sided Laplace transform of the following function beginning with the definition of the onesided Laplace transform.

 $e^{-at}\sin\omega t$

(damped sine)

NAME_____

Problem #5 (10 pts)

Prove/derive the following operational Laplace transform.

tf(t)

 $-\frac{dF(s)}{ds}$

TABLE OF LAPLACE TRANSFORMS

An Abbreviated List of Laplace Transform Pairs		
$f(t) \ (t > 0^-)$	Туре	F(s)
$\delta(t)$	(impulse)	1
u(t)	(step)	$\frac{1}{s}$
t	(ramp)	$\frac{1}{s^2}$
e^{-at}	(exponential)	$\frac{1}{s+a}$
sin wt	(sine)	$\frac{\omega}{s^2 + \omega^2}$
cos wt	(cosine)	$\frac{s}{s^2 + \omega^2}$
te^{-at}	(damped ramp)	$\frac{1}{(s+a)^2}$
$e^{-at}\sin\omega t$	(damped sine)	$\frac{\omega}{\left(s+a\right)^2+\omega^2}$
$e^{-at}\cos\omega t$	(damped cosine)	$\frac{s+a}{(s+a)^2+\omega^2}$

An Abbreviated List of Operational Transforms

f(t)	F(s)
Kf(t)	KF(s)
$f_1(t) + f_2(t) - f_3(t) + \cdots$	$F_1(s) + F_2(s) - F_3(s) + \cdots$
$\frac{df(t)}{dt}$	$sF(s) - f(0^-)$
$\frac{d^2 f(t)}{dt^2}$	$s^2 F(s) - sf(0^-) - \frac{df(0^-)}{dt}$
$\frac{d^n f(t)}{dt^n}$	$s^{n} F(s) - s^{n-1} f(0^{-}) - s^{n-2} \frac{df(0^{-})}{dt} - s^{n-3} \frac{df^{2}(0^{-})}{dt^{2}} - \dots - \frac{d^{n-1} f(0^{-})}{dt^{n-1}}$
$\int_0^t f(x) dx$	$\frac{F(s)}{s}$
f(t-a)u(t-a), a > 0	$e^{-as}F(s)$
$e^{-at}f(t)$	F(s + a)
f(at), a > 0	$\frac{1}{a}F\left(\frac{s}{a}\right)$
tf(t)	$-\frac{dF(s)}{ds}$
$t^n f(t)$	$(-1)^n \frac{d^n F(s)}{ds^n}$
$\frac{f(t)}{t}$	$\int_{s}^{\infty} F(u) du$