COLORADO SCHOOL OF MINES ELECTRICAL ENGINEERING \& COMPUTER SCIENCE DEPARTMENT

EENG-382
Engineering Circuit Analysis (Circuits II)
Spring 2014

Handwritten Homework \#3 (HW03)

Problem \#1

Consider a Y-connected generator set in which each leg has an open circuit output voltage of 240 V and a source impedance of $(0.1+\mathrm{j} 0.8) \Omega$. The transmission lines connecting the generator set to the loads each have an impedance of $(0.4+\mathrm{j} 3.2) \Omega$. The load consists of three Y-connected circuits. The loads are $\mathrm{Z}_{\mathrm{A}}=(59.5+\mathrm{j} 76) \Omega, \mathrm{Z}_{\mathrm{B}}=(39.5+\mathrm{j} 26) \Omega$, and $\mathrm{Z}_{\mathrm{B}}=(19.5+\mathrm{j} 11) \Omega$.

Use the neutral point of the generator set as the voltage reference.
a) What are the magnitudes of the voltages across and currents in the three loads?
b) What is the magnitude of the voltage at the neutral point of the load?

A ground rod is now placed at the neutral points of both the generator set and the load and the effective impedance through the ground between the two rods is 10Ω.
c) What are the magnitudes of the voltages across and currents in the three loads?
d) What is the magnitude of the voltage at the neutral point of the load?
e) What is the magnitude of the ground current?

In addition to the ground rods, a fourth wire (the same as the others) is added to the transmission line to serve as a neutral wire.
f) What are the magnitudes of the voltages across and currents in the three loads?
g) What is the magnitude of the voltage at the neutral point of the load?
h) What is the magnitude of the ground current?
i) What is the magnitude of the current in the neutral conductor?

